Miranda Nabben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5120020/publications.pdf Version: 2024-02-01

MIDANDA NARREN

#	Article	IF	CITATIONS
1	Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovascular Research, 2015, 106, 194-205.	1.8	78
2	The effect of UCP3 overexpression on mitochondrial ROS production in skeletal muscle of young versus aged mice. FEBS Letters, 2008, 582, 4147-4152.	1.3	72
3	Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11711-11716.	3.3	67
4	Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. Journal of Molecular and Cellular Cardiology, 2016, 100, 64-71.	0.9	61
5	Post-translational modifications of CD36 (SR-B2): Implications for regulation of myocellular fatty acid uptake. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2253-2258.	1.8	61
6	Mitochondrial uncoupling protein 3 and its role in cardiac- and skeletal muscle metabolism. Physiology and Behavior, 2008, 94, 259-269.	1.0	58
7	Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165579.	1.8	55
8	Mitochondrial function, content and ROS production in rat skeletal muscle: Effect of highâ€fat feeding. FEBS Letters, 2008, 582, 510-516.	1.3	52
9	Palmitate-Induced Vacuolar-Type H+-ATPase Inhibition Feeds Forward Into Insulin Resistance and Contractile Dysfunction. Diabetes, 2017, 66, 1521-1534.	0.3	50
10	Cardiac diastolic dysfunction in high-fat diet fed mice is associated with lipotoxicity without impairment of cardiac energetics in vivo. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1525-1537.	1.2	48
11	Regulation of the subcellular trafficking of CD36, a major determinant of cardiac fatty acid utilization. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1461-1471.	1.2	43
12	Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations. Cardiovascular Research, 2017, 113, 1148-1160.	1.8	41
13	Microbial-Driven Butyrate Regulates Jejunal Homeostasis in Piglets During the Weaning Stage. Frontiers in Microbiology, 2018, 9, 3335.	1.5	40
14	Uncoupled respiration, ROS production, acute lipotoxicity and oxidative damage in isolated skeletal muscle mitochondria from UCP3-ablated mice. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1095-1105.	0.5	39
15	Increased cardiac fatty acid oxidation in a mouse model with decreased malonyl-CoA sensitivity of CPT1B. Cardiovascular Research, 2018, 114, 1324-1334.	1.8	37
16	2-Arachidonoylglycerol ameliorates inflammatory stress-induced insulin resistance in cardiomyocytes. Journal of Biological Chemistry, 2017, 292, 7105-7114.	1.6	30
17	CD36 (SR-B2) as master regulator of cellular fatty acid homeostasis. Current Opinion in Lipidology, 2022, 33, 103-111.	1.2	29
18	Adaptations in Mitochondrial Function Parallel, but Fail to Rescue, the Transition to Severe Hyperglycemia and Hyperinsulinemia: A Study in Zucker Diabetic Fatty Rats. Obesity, 2010, 18, 1100-1107.	1.5	25

Miranda Nabben

#	Article	IF	CITATIONS
19	A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36. Biochemical Journal, 2017, 474, 149-162.	1.7	24
20	Understanding the distinct subcellular trafficking of CD36 and GLUT4 during the development of myocardial insulin resistance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165775.	1.8	24
21	Statins Promote Cardiac Infarct Healing by Modulating Endothelial Barrier Function Revealed by Contrast-Enhanced Magnetic Resonance Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 186-194.	1.1	20
22	CD36 (SR-B2) as a Target to Treat Lipid Overload-Induced Cardiac Dysfunction. Journal of Lipid and Atherosclerosis, 2020, 9, 66.	1.1	20
23	Guidelines on models of diabetic heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H176-H200.	1.5	20
24	Augmenting Vacuolar H+-ATPase Function Prevents Cardiomyocytes from Lipid-Overload Induced Dysfunction. International Journal of Molecular Sciences, 2020, 21, 1520.	1.8	19
25	Significance of uncoupling protein 3 in mitochondrial function upon mid- and long-term dietary high-fat exposure. FEBS Letters, 2011, 585, 4010-4017.	1.3	17
26	CD36 as a target for metabolic modulation therapy in cardiac disease. Expert Opinion on Therapeutic Targets, 2021, 25, 393-400.	1.5	17
27	Lack of UCP3 does not affect skeletal muscle mitochondrial function under lipid-challenged conditions, but leads to sudden cardiac death. Basic Research in Cardiology, 2014, 109, 447.	2.5	16
28	Pivotal role of membrane substrate transporters on the metabolic alterations in the pressure-overloaded heart. Cardiovascular Research, 2019, 115, 1000-1012.	1.8	16
29	Specific amino acid supplementation rescues the heart from lipid overload-induced insulin resistance and contractile dysfunction by targeting the endosomal mTOR–v-ATPase axis. Molecular Metabolism, 2021, 53, 101293.	3.0	16
30	Metabolic remodelling in heart failure revisited. Nature Reviews Cardiology, 2018, 15, 780-780.	6.1	15
31	Evaluation of the Interaction of Sex Hormones and Cardiovascular Function and Health. Current Heart Failure Reports, 2022, 19, 200-212.	1.3	15
32	Human embryonic stem cell-derived cardiomyocytes as an in vitro model to study cardiac insulin resistance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1960-1967.	1.8	14
33	Acute and Chronic Effects of Protein Kinase-D Signaling on Cardiac Energy Metabolism. Frontiers in Cardiovascular Medicine, 2018, 5, 65.	1.1	14
34	High levels of whole-body energy expenditure are associated with a lower coupling of skeletal muscle mitochondria in C57Bl/6 mice. Metabolism: Clinical and Experimental, 2010, 59, 1612-1618.	1.5	13
35	A genistein-enriched diet neither improves skeletal muscle oxidative capacity nor prevents the transition towards advanced insulin resistance in ZDF rats. Scientific Reports, 2016, 6, 22854.	1.6	11
36	Putative Role of Protein Palmitoylation in Cardiac Lipid-Induced Insulin Resistance. International Journal of Molecular Sciences, 2020, 21, 9438.	1.8	9

Miranda Nabben

#	Article	IF	CITATIONS
37	CSK-3 Inhibitors: Anti-Diabetic Treatment Associated with Cardiac Risk?. Cardiovascular Drugs and Therapy, 2016, 30, 233-235.	1.3	8
38	Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in patients with mitochondrial myopathy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R689-R701.	0.9	8
39	Comparison of human and rodent cell models to study myocardial lipid-induced insulin resistance. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 167, 102267.	1.0	5
40	Metabolic Interventions to Prevent Hypertrophy-Induced Alterations in Contractile Properties In Vitro. International Journal of Molecular Sciences, 2021, 22, 3620.	1.8	4
41	Multiview deconvolution approximation multiphoton microscopy of tissues and zebrafish larvae. Scientific Reports, 2021, 11, 10160.	1.6	4
42	Endosomal v-ATPase as a Sensor Determining Myocardial Substrate Preference. Metabolites, 2022, 12, 579.	1.3	3
43	Letter by Neumann et al Regarding Article, "Myostatin Regulates Energy Homeostasis in the Heart and Prevents Heart Failure― Circulation Research, 2015, 116, e95-6.	2.0	1
44	Assessment of AMPK-Stimulated Cellular Long-Chain Fatty Acid and Glucose Uptake. Methods in Molecular Biology, 2018, 1732, 343-361.	0.4	1
45	Subcellular Recycling of CD36 as Target to Rescue Lipid Overloadâ€induced Myocardial Contractile Dysfunction. FASEB Journal, 2022, 36, .	0.2	0