Liam G Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5119864/publications.pdf Version: 2024-02-01

LIAM C MODDIS

#	Article	IF	CITATIONS
1	Systematic Review on Endovascular Access to Intracranial Arteries for Mechanical Thrombectomy in Acute Ischemic Stroke. Clinical Neuroradiology, 2022, 32, 5-12.	1.9	6
2	An in vitro Assessment of the Haemodynamic Features Occurring Within the True and False Lumens Separated by a Dissection Flap for a Patient-Specific Type B Aortic Dissection. Frontiers in Cardiovascular Medicine, 2022, 9, 797829.	2.4	1
3	Hybrid repair versus conventional open repair for thoracic aortic arch aneurysms. The Cochrane Library, 2021, 2021, CD012923.	2.8	7
4	Class imbalance in gradient boosting classification algorithms: Application to experimental stroke data. Statistical Methods in Medical Research, 2021, 30, 916-925.	1.5	8
5	An in vitro assessment of atrial fibrillation flow types on cardiogenic emboli trajectory paths. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 1421-1431.	1.8	1
6	An in-vitro evaluation of the flow haemodynamic performance of Gore-Tex extracardiac conduits for univentricular circulation. Journal of Cardiothoracic Surgery, 2020, 15, 235.	1.1	1
7	Evaluation of aortic arch aneurysms treated with the streamliner multilayer flow modulator. Italian Journal of Vascular and Endovascular Surgery, 2020, 27, .	1.0	2
8	Embolus Analog Trajectory Paths Under Physiological Flowrates Through Patient-Specific Aortic Arch Models. Journal of Biomechanical Engineering, 2019, 141, .	1.3	9
9	Changes in left ventricular shape and morphology in the presence of heart failure: a four-dimensional quantitative and qualitative analysis. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1415-1430.	2.8	7
10	Investigation of the Hemodynamics Influencing Emboli Trajectories Through a Patient-Specific Aortic Arch Model. Stroke, 2019, 50, 1531-1538.	2.0	5
11	Per-Pass Analysis of Thrombus Composition in Patients With Acute Ischemic Stroke Undergoing Mechanical Thrombectomy. Stroke, 2019, 50, 1156-1163.	2.0	89
12	Establishment of an Automated Algorithm Utilizing Optical Coherence Tomography and Micro-Computed Tomography Imaging to Reconstruct the 3-D Deformed Stent Geometry. IEEE Transactions on Medical Imaging, 2019, 38, 710-720.	8.9	5
13	Hybrid repair versus conventional open repair for thoracic aortic arch aneurysms. The Cochrane Library, 2018, , .	2.8	1
14	Novel methodology to replicate clot analogs with diverse composition in acute ischemic stroke. Journal of NeuroInterventional Surgery, 2017, 9, 486-491.	3.3	90
15	Computational fluid analysis of symptomatic chronic type B aortic dissections managed with the Streamliner Multilayer Flow Modulator. Journal of Vascular Surgery, 2017, 65, 951-963.	1.1	31
16	ANATOMICALLY AND DIELECTRICALLY REALISTIC MICROWAVE HEAD PHANTOM WITH CIRCULATION AND RECONFIGURABLE LESIONS. Progress in Electromagnetics Research B, 2017, 78, 47-60.	1.0	16
17	Insights from complex aortic surgery with a Streamliner device for aortic arch repair (STAR). Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 1309-1318.e5.	0.8	13
18	A computational assessment of the hemodynamic effects of crossed and non-crossed bifurcated stent-graft devices for the treatment of abdominal aortic aneurysms. Medical Engineering and Physics, 2016, 38, 1458-1473.	1.7	19

LIAM G MORRIS

#	Article	lF	CITATIONS
19	Systematic Review and Patient-Level Meta-analysis of the Streamliner Multilayer Flow Modulator in the Management of Complex Thoracoabdominal Aortic Pathology. Journal of Endovascular Therapy, 2016, 23, 501-512.	1.5	34
20	An experimental assessment of catheter trackability forces with tortuosity parameters along patient-specific coronary phantoms. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2016, 230, 153-165.	1.8	9
21	The Effects That Cardiac Motion has on Coronary Hemodynamics and Catheter Trackability Forces for the Treatment of Coronary Artery Disease: An In Vitro Assessment. Cardiovascular Engineering and Technology, 2015, 6, 430-449.	1.6	6
22	An In Vitro Evaluation of Emboli Trajectories Within a Three-Dimensional Physical Model of the Circle of Willis Under Cerebral Blood Flow Conditions. Annals of Biomedical Engineering, 2015, 43, 2265-2278.	2.5	16
23	The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 768-780.	1.8	9
24	An In Vitro Assessment of the Cerebral Hemodynamics Through Three Patient Specific Circle of Willis Geometries. Journal of Biomechanical Engineering, 2014, 136, 011007.	1.3	13
25	An Experimental Investigation of the Hemodynamic Variations Due to Aplastic Vessels Within Three-Dimensional Phantom Models of the Circle of Willis. Annals of Biomedical Engineering, 2014, 42, 123-138.	2.5	24
26	Stent graft performance in the treatment of abdominal aortic aneurysms: The influence of compliance and geometry. Journal of Biomechanics, 2013, 46, 383-395.	2.1	32
27	Innovative Design and Manufacturing Techniques for Patient Specific Abdominal Aortic Aneurysm Flexible Benchtop Models. , 2013, , .		Ο
28	Variability of Computational Fluid Dynamics Solutions for Pressure and Flow in a Giant Aneurysm: The ASME 2012 Summer Bioengineering Conference CFD Challenge. Journal of Biomechanical Engineering, 2013, 135, 021016.	1.3	109
29	Hemodynamic variations due to spiral blood flow through four patientâ€specific bifurcated stent graft configurations for the treatment of abdominal aortic aneurysms. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29, 179-196.	2.1	10
30	Finite element and photoelastic modelling of an abdominal aortic aneurysm: a comparative study. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 1111-1119.	1.6	4
31	CFD Challenge: Experimental Benchmarking Data for the Pressure Drop Across a Cerebral Aneurysm Model. , 2012, , .		Ο
32	The Hemodynamic Influence due to the Inclusion of the Full Aorta on a Patient Specific Stent Graft (SG) Device. , 2012, , .		0
33	An Experimental Study of the Effects Anatomical Variations Have on Collateral Flows Within the Circle of Willis. , 2011, , .		3
34	In vitro evaluation of the effects of intraluminal thrombus on abdominal aortic aneurysm wall dynamics. Medical Engineering and Physics, 2011, 33, 957-966.	1.7	23
35	Generation of Realistic Physical Models of Cerebral Aneurysms for In Vitro Flow Visualisation. , 2009, , .		1
36	Geometrical Enhancements for Abdominal Aortic Stent-Grafts. Journal of Endovascular Therapy, 2008, 15, 518-529.	1.5	42

#	Article	IF	CITATIONS
37	A Review of the In Vivo and In Vitro Biomechanical Behavior and Performance of Postoperative Abdominal Aortic Aneurysms and Implanted Stent-Grafts. Journal of Endovascular Therapy, 2008, 15, 468-484.	1.5	42
38	NUMERICAL AND EXPERIMENTAL TECHNIQUES FOR THE STUDY OF BIOMECHANICS IN THE ARTERIAL SYSTEM. , 2007, , 233-270.		2
39	Effects of flat, parabolic and realistic steady flow inlet profiles on idealised and realistic stent graft fits through Abdominal Aortic Aneurysms (AAA). Medical Engineering and Physics, 2006, 28, 19-26.	1.7	48

LIAM G MORRIS