
Hiroaki Takeuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5119471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viral loads and profile of the patients infected with SARSâ€CoVâ€2 Delta, Alpha, or R.1 variants in Tokyo. Journal of Medical Virology, 2022, 94, 1707-1710.	2.5	20
2	Flavivirus recruits the valosin-containing protein–NPL4 complex to induce stress granule disassembly for efficient viral genome replication. Journal of Biological Chemistry, 2022, 298, 101597.	1.6	7
3	Maternal embryonic leucine zipper kinase (MELK) optimally regulates the HIV-1 uncoating process. Journal of Theoretical Biology, 2022, , 111152.	0.8	0
4	Automated amplification-free digital RNA detection platform for rapid and sensitive SARS-CoV-2 diagnosis. Communications Biology, 2022, 5, .	2.0	28
5	Viral load of SARSâ€CoVâ€2 Omicron is not high despite its high infectivity. Journal of Medical Virology, 2022, 94, 5543-5546.	2.5	22
6	Identification and characterization of Stathmin 1 as a host factor involved in HIV-1 latency. Biochemical and Biophysical Research Communications, 2021, 567, 106-111.	1.0	3
7	SARS oVâ€2 R.1 lineage variants that prevailed in Tokyo in March 2021. Journal of Medical Virology, 2021, 93, 6833-6836.	2.5	12
8	Arterial and Venous Thrombosis Complicated in COVID-19: A Retrospective Single Center Analysis in Japan. Frontiers in Cardiovascular Medicine, 2021, 8, 767074.	1.1	20
9	M-Sec facilitates intercellular transmission of HIV-1 through multiple mechanisms. Retrovirology, 2020, 17, 20.	0.9	14
10	Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication. Current Topics in Medicinal Chemistry, 2019, 19, 1621-1649.	1.0	68
11	HIV-1 DNA-capture-seq is a useful tool for the comprehensive characterization of HIV-1 provirus. Scientific Reports, 2019, 9, 12326.	1.6	33
12	PATZ1 is required for efficient HIV-1 infection. Biochemical and Biophysical Research Communications, 2019, 514, 538-544.	1.0	3
13	BI-2536 and BI-6727, dual Polo-like kinase/bromodomain inhibitors, effectively reactivate latent HIV-1. Scientific Reports, 2018, 8, 3521.	1.6	30
14	A20 restores phorbol esterâ€induced differentiation of THPâ€1 cells in the absence of nuclear factor‵̂B activation. Journal of Cellular Biochemistry, 2018, 119, 1475-1487.	1.2	4
15	Robust Enhancement of Lentivirus Production by Promoter Activation. Scientific Reports, 2018, 8, 15036.	1.6	10
16	elF4A2 is a host factor required for efficient HIV-1 replication. Microbes and Infection, 2018, 20, 346-352.	1.0	13
17	Direct and label-free influenza virus detection based on multisite binding to sialic acid receptors. Biosensors and Bioelectronics, 2017, 92, 234-240.	5.3	29
18	Human SMOOTHENED inhibits human immunodeficiency virus type 1 infection. Biochemical and Biophysical Research Communications, 2017, 493, 132-138.	1.0	4

HIROAKI TAKEUCHI

#	Article	IF	CITATIONS
19	N-terminally truncated POM121C inhibits HIV-1 replication. PLoS ONE, 2017, 12, e0182434.	1.1	14
20	Phosphorylation of the HIV-1 capsid by MELK triggers uncoating to promote viral cDNA synthesis. PLoS Pathogens, 2017, 13, e1006441.	2.1	27
21	Suppressor of Cytokine Signaling 1 Counteracts Rhesus Macaque TRIM5α-Induced Inhibition of Human Immunodeficiency Virus Type-1 Production. PLoS ONE, 2014, 9, e109640.	1.1	4
22	Induction of heat-shock protein 70 by prostaglandin A1 inhibits HIV-1 Vif-mediated degradation of APOBEC3G. Antiviral Research, 2013, 99, 307-311.	1.9	7
23	A Carboxy-Terminally Truncated Human CPSF6 Lacking Residues Encoded by Exon 6 Inhibits HIV-1 cDNA Synthesis and Promotes Capsid Disassembly. Journal of Virology, 2013, 87, 7726-7736.	1.5	44
24	SIV replication in human cells. Frontiers in Microbiology, 2012, 3, 162.	1.5	5
25	Host cell species-specific effect of cyclosporine A on simian immunodeficiency virus replication. Retrovirology, 2012, 9, 3.	0.9	10
26	Heat Shock Protein 70 Inhibits HIV-1 Vif-mediated Ubiquitination and Degradation of APOBEC3G. Journal of Biological Chemistry, 2011, 286, 10051-10057.	1.6	20
27	The Antiviral Spectra of TRIM5α Orthologues and Human TRIM Family Proteins against Lentiviral Production. PLoS ONE, 2011, 6, e16121.	1.1	15
28	Broadening of CD8+ cell responses in vaccine-based simian immunodeficiency virus controllers. Aids, 2010, 24, 2777-2787.	1.0	15
29	A structural constraint for functional interaction between N-terminal and C-terminal domains in simian immunodeficiency virus capsid proteins. Retrovirology, 2010, 7, 90.	0.9	9
30	Contribution of Cyclophilin A to determination of simian immunodeficiency virus tropism: A progress update. Vaccine, 2010, 28, B51-B54.	1.7	2
31	Host factors involved in resistance to retroviral infection. Microbiology and Immunology, 2008, 52, 318-325.	0.7	46
32	HIV-1 Vif promotes the formation of high molecular mass APOBEC3G complexes. Virology, 2008, 372, 136-146.	1.1	42
33	Gag-Specific Cytotoxic T-Lymphocyte-Based Control of Primary Simian Immunodeficiency Virus Replication in a Vaccine Trial. Journal of Virology, 2008, 82, 10199-10206.	1.5	57
34	Human Immunodeficiency Virus Type 1 Vif Inhibits Packaging and Antiviral Activity of a Degradation-Resistant APOBEC3G Variant. Journal of Virology, 2007, 81, 8236-8246.	1.5	83
35	Vif Counteracts a Cyclophilin A-Imposed Inhibition of Simian Immunodeficiency Viruses in Human Cells. Journal of Virology, 2007, 81, 8080-8090.	1.5	15
36	Enzymatically Active APOBEC3G Is Required for Efficient Inhibition of Human Immunodeficiency Virus Type 1. Journal of Virology, 2007, 81, 13346-13353.	1.5	137

HIROAKI TAKEUCHI

#	Article	IF	CITATIONS
37	Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology, 2007, 4, 48.	0.9	70
38	Production of infectious virus and degradation of APOBEC3G are separable functional properties of human immunodeficiency virus type 1 Vif. Virology, 2007, 369, 329-339.	1.1	36
39	Monomeric APOBEC3G Is Catalytically Active and Has Antiviral Activity. Journal of Virology, 2006, 80, 4673-4682.	1.5	76
40	Anti-V3 Humanized Antibody KD-247 Effectively Suppresses Ex Vivo Generation of Human Immunodeficiency Virus Type 1 and Affords Sterile Protection of Monkeys against a Heterologous Simian/Human Immunodeficiency Virus Infection. Journal of Virology, 2006, 80, 5563-5570.	1.5	47
41	Biochemical Activities of Highly Purified, Catalytically Active Human APOBEC3G: Correlation with Antiviral Effect. Journal of Virology, 2006, 80, 5992-6002.	1.5	184
42	Production of Infectious SIVagm from Human Cells Requires Functional Inactivation but Not Viral Exclusion of Human APOBEC3G. Journal of Biological Chemistry, 2005, 280, 375-382.	1.6	24
43	Viral RNA Is Required for the Association of APOBEC3G with Human Immunodeficiency Virus Type 1 Nucleoprotein Complexes. Journal of Virology, 2005, 79, 5870-5874.	1.5	170
44	Suppression of Human Immunodeficiency Virus Type 1 (HIV-1) Replication by an HIV-1-dependent Double Locked Vector with the Cre/loxP System. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1907-1917.	0.4	1
45	Production of infectious human immunodeficiency virus type 1 does not require depletion of APOBEC3C from virus-producing cells. Retrovirology, 2004, 1, 27.	0.9	89
46	Inhibition of human immunodeficiency virus 1 replication in vitro by a self-stabilized oligonucleotide with 2'-O-methyl-guanosine-uridine quadruplex motifs. Journal of Antimicrobial Chemotherapy, 2003, 51, 813-819.	1.3	4
47	Isolation and Characterization of an Infectious HIV Type 1 Molecular Clone from a Patient with Primary Infection. AIDS Research and Human Retroviruses, 2002, 18, 1127-1133.	0.5	10
48	Inhibition of Human Immunodeficiency Virus Type 1 Activity In Vitro by a New Self-Stabilized Oligonucleotide with Guanosine-Thymidine Quadruplex Motifs. Journal of Virology, 2002, 76, 3015-3022.	1.5	23
49	Inhibition of HIV-1 Replication by an HIV-1 Dependent Ribozyme Expression Vector with the Cre/loxP (ON/OFF) System. Antiviral Chemistry and Chemotherapy, 2002, 13, 273-281.	0.3	7
50	Inhibition of human immunodeficiency virus type 1 replication by P-stereodefined oligo(nucleoside) Tj ETQq0 0 C	rgßJ /Ov	erlock 10 Tf 5
51	EFFECTIVE SUPPRESSION OF HIV-1 GENE EXPRESSION BY A MAMMALIAN tRNA 3â€2 PROCESSING ENDORIBONUCLEASE AND EXTERNAL GUIDE SEQUENCE OLIGOZYMES. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 719-722.	0.4	2
52	INHIBITION OF HIV-1 REPLICATION BY THE CRE-LOXP HAMMERHEAD RIBOZYME. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 723-726.	0.4	2

53	Sequence-specific inhibition of a transcription factor by circular dumbbell DNA oligonucleotides. FEBS Letters, 1999, 461, 136-140.	1.	.3	41
----	--	----	----	----