Jan Maarten van Dijl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5118953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Essential Bacillus subtilis genes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4678-4683.	3.3	1,261
2	Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in <i>Bacillus subtilis</i> . Science, 2012, 335, 1103-1106.	6.0	809
3	Signal Peptide-Dependent Protein Transport in Bacillus subtilis : a Genome-Based Survey of the Secretome. Microbiology and Molecular Biology Reviews, 2000, 64, 515-547.	2.9	700
4	Proteomics of Protein Secretion by Bacillus subtilis: Separating the "Secrets―of the Secretome. Microbiology and Molecular Biology Reviews, 2004, 68, 207-233.	2.9	497
5	A Proteomic View on Genome-Based Signal Peptide Predictions. Genome Research, 2001, 11, 1484-1502.	2.4	309
6	Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microbial Cell Factories, 2013, 12, 3.	1.9	280
7	Global Network Reorganization During Dynamic Adaptations of <i>Bacillus subtilis</i> Metabolism. Science, 2012, 335, 1099-1103.	6.0	255
8	Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nature Communications, 2013, 4, 2584.	5.8	231
9	Mapping the Pathways to StaphylococcalPathogenesis by Comparative Secretomics. Microbiology and Molecular Biology Reviews, 2006, 70, 755-788.	2.9	218
10	Genome Engineering Reveals Large Dispensable Regions in Bacillus subtilis. Molecular Biology and Evolution, 2003, 20, 2076-2090.	3.5	188
11	Two minimal Tat translocases in Bacillus. Molecular Microbiology, 2004, 54, 1319-1325.	1.2	174
12	Staphylococcus aureus Transcriptome Architecture: From Laboratory to Infection-Mimicking Conditions. PLoS Genetics, 2016, 12, e1005962.	1.5	170
13	Functional analysis of the secretory precursor processing machinery of <i>Bacillus subtilis</i> :â€fidentification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes and Development, 1998, 12, 2318-2331.	2.7	159
14	A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Molecular Microbiology, 2008, 41, 1159-1172.	1.2	147
15	A Novel Class of Heat and Secretion Stress-Responsive Genes Is Controlled by the Autoregulated CssRS Two-Component System of Bacillus subtilis. Journal of Bacteriology, 2002, 184, 5661-5671.	1.0	142
16	TatC Is a Specificity Determinant for Protein Secretion via the Twin-arginine Translocation Pathway. Journal of Biological Chemistry, 2000, 275, 41350-41357.	1.6	139
17	Membrane Proteases in the Bacterial Protein Secretion and Quality Control Pathway. Microbiology and Molecular Biology Reviews, 2012, 76, 311-330.	2.9	139
18	Proteomics uncovers extreme heterogeneity in the <i>Staphylococcus aureus</i> exoproteome due to genomic plasticity and variant gene regulation. Proteomics, 2010, 10, 1634-1644.	1.3	129

JAN MAARTEN VAN DIJL

#	Article	IF	CITATIONS
19	Bacillus subtilis Contains Four Closely Related Type I Signal Peptidases with Overlapping Substrate Specificities. Journal of Biological Chemistry, 1997, 272, 25983-25992.	1.6	124
20	SecDF of Bacillus subtilis, a Molecular Siamese Twin Required for the Efficient Secretion of Proteins. Journal of Biological Chemistry, 1998, 273, 21217-21224.	1.6	123
21	Profiling the surfacome of <i>Staphylococcus aureus</i> . Proteomics, 2010, 10, 3082-3096.	1.3	119
22	Type I signal peptidases of Gram-positive bacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1694, 279-297.	1.9	117
23	The Role of Lipoprotein Processing by Signal Peptidase II in the Gram-positive Eubacterium Bacillus subtilis. Journal of Biological Chemistry, 1999, 274, 1698-1707.	1.6	114
24	Cloning and expression of a Streptococcus cremoris proteinase in Bacillus subtilis and Streptococcus lactis. Applied and Environmental Microbiology, 1985, 50, 94-101.	1.4	113
25	Targeted imaging of bacterial infections: advances, hurdles and hopes. FEMS Microbiology Reviews, 2015, 39, 892-916.	3.9	106
26	Evaluation of Bottlenecks in the Late Stages of Protein Secretion in <i>Bacillus subtilis</i> . Applied and Environmental Microbiology, 1999, 65, 2934-2941.	1.4	102
27	The extracellular proteome of Bacillus subtilis under secretion stress conditions. Molecular Microbiology, 2003, 49, 143-156.	1.2	100
28	Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1694, 311-27.	1.9	89
29	Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis. FEMS Microbiology Reviews, 2019, 43, 1-18.	3.9	86
30	Functional Analysis of Paralogous Thiol-disulfide Oxidoreductases in Bacillus subtilis. Journal of Biological Chemistry, 1999, 274, 24531-24538.	1.6	85
31	The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2267-2278.	1.9	84
32	Proteomics-based consensus prediction of protein retention in a bacterial membrane. Proteomics, 2005, 5, 4472-4482.	1.3	82
33	Protein transport across and into cell membranes in bacteria and archaea. Cellular and Molecular Life Sciences, 2010, 67, 179-199.	2.4	81
34	The Tat system of Gram-positive bacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1698-1706.	1.9	75
35	The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Molecular Microbiology, 1995, 17, 621-631.	1.2	73
36	Protein secretion and possible roles for multiple signal peptidases for precursor processing in Bacilli. Journal of Biotechnology, 1998, 64, 3-13.	1.9	72

Jan Maarten van Dijl

#	Article	IF	CITATIONS
37	Secretion of functional human interleukin-3 from Bacillus subtilis. Journal of Biotechnology, 2006, 123, 211-224.	1.9	72
38	Bifunctional TatA subunits in minimal Tat protein translocases. Trends in Microbiology, 2006, 14, 2-4.	3.5	72
39	The cell surface proteome of <i>Staphylococcus aureus</i> . Proteomics, 2011, 11, 3154-3168.	1.3	71
40	Antioxidants Keep the Potentially Probiotic but Highly Oxygen-Sensitive Human Gut Bacterium Faecalibacterium prausnitzii Alive at Ambient Air. PLoS ONE, 2014, 9, e96097.	1.1	69
41	Signal Peptide Peptidase- and ClpP-like Proteins of Bacillus subtilis Required for Efficient Translocation and Processing of Secretory Proteins. Journal of Biological Chemistry, 1999, 274, 24585-24592.	1.6	68
42	Extracytoplasmic Proteases Determining the Cleavage and Release of Secreted Proteins, Lipoproteins, and Membrane Proteins in <i>Bacillus subtilis</i> . Journal of Proteome Research, 2013, 12, 4101-4110.	1.8	64
43	Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. Journal of Biotechnology, 2002, 98, 243-254.	1.9	62
44	Extracellular Proteome and Citrullinome of the Oral Pathogen <i>Porphyromonas gingivalis</i> . Journal of Proteome Research, 2016, 15, 4532-4543.	1.8	62
45	The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis. FEBS Journal, 2006, 273, 3816-3827.	2.2	61
46	How Does Streptococcus pneumoniae Invade the Brain?. Trends in Microbiology, 2016, 24, 307-315.	3.5	61
47	Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Molecular Microbiology, 1996, 22, 605-618.	1.2	59
48	Less Is More: Toward a Genome-Reduced <i>Bacillus</i> Cell Factory for "Difficult Proteins― ACS Synthetic Biology, 2019, 8, 99-108.	1.9	58
49	Stress-Responsive Systems Set Specific Limits to the Overproduction of Membrane Proteins in <i>Bacillus subtilis</i> . Applied and Environmental Microbiology, 2009, 75, 7356-7364.	1.4	56
50	pBaSysBioll: an integrative plasmid generating gfp transcriptional fusions for high-throughput analysis of gene expression in Bacillus subtilis. Microbiology (United Kingdom), 2010, 156, 1600-1608.	0.7	56
51	A Secreted Bacterial Peptidylarginine Deiminase Can Neutralize Human Innate Immune Defenses. MBio, 2018, 9, .	1.8	55
52	Bacterial pleomorphism and competition in a relative humidity gradient. Environmental Microbiology, 2009, 11, 809-822.	1.8	53
53	Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis. Journal of General Microbiology, 1991, 137, 2073-2083.	2.3	49
54	The peptidylarginine deiminase gene is a conserved feature of Porphyromonas gingivalis. Scientific Reports, 2015, 5, 13936.	1.6	49

#	Article	IF	CITATIONS
55	A human monoclonal antibody targeting the conserved staphylococcal antigen IsaA protects mice against Staphylococcus aureus bacteremia. International Journal of Medical Microbiology, 2015, 305, 55-64.	1.5	49
56	Transport of Folded Proteins by the Tat System. Protein Journal, 2019, 38, 377-388.	0.7	48
57	Proteomic dissection of potential signal recognition particle dependence in protein secretion byBacillus subtilis. Proteomics, 2006, 6, 3636-3648.	1.3	47
58	Small Regulatory RNA-Induced Growth Rate Heterogeneity of Bacillus subtilis. PLoS Genetics, 2015, 11, e1005046.	1.5	45
59	The Phosphoenolpyruvate:Sugar Phosphotransferase System Is Involved in Sensitivity to the Glucosylated Bacteriocin Sublancin. Antimicrobial Agents and Chemotherapy, 2015, 59, 6844-6854.	1.4	44
60	Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression. Microbiology and Molecular Biology Reviews, 2016, 80, 1029-1057.	2.9	44
61	Staphylococcal PknB as the First Prokaryotic Representative of the Proline-Directed Kinases. PLoS ONE, 2010, 5, e9057.	1.1	44
62	High Anti-Staphylococcal Antibody Titers in Patients with Epidermolysis Bullosa Relate to Long-Term Colonization with Alternating Types of Staphylococcus aureus. Journal of Investigative Dermatology, 2013, 133, 847-850.	0.3	40
63	Host–pathogen interactions in epidermolysis bullosa patients colonized with Staphylococcus aureus. International Journal of Medical Microbiology, 2014, 304, 195-203.	1.5	40
64	The Staphylococcus aureus proteome. International Journal of Medical Microbiology, 2014, 304, 110-120.	1.5	39
65	The Staphylococcal Cassette Chromosome mec type V from Staphylococcus aureus ST398 is packaged into bacteriophage capsids. International Journal of Medical Microbiology, 2014, 304, 764-774.	1.5	39
66	Different Mechanisms for Thermal Inactivation of Bacillus subtilis Signal Peptidase Mutants. Journal of Biological Chemistry, 1999, 274, 15865-15868.	1.6	38
67	Synthetic Effects of <i>secG</i> and <i>secY2</i> Mutations on Exoproteome Biogenesis in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2010, 192, 3788-3800.	1.0	38
68	Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO Journal, 1992, 11, 2819-28.	3.5	38
69	Staphylococcal trafficking and infection—from â€~nose to gut' and back. FEMS Microbiology Reviews, 2022, 46, .	3.9	37
70	Environmental Salinity Determines the Specificity and Need for Tat-Dependent Secretion of the YwbN Protein in Bacillus subtilis. PLoS ONE, 2011, 6, e18140.	1.1	36
71	The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism. Nucleic Acids Research, 2014, 42, 11393-11407.	6.5	36
72	Active Lipoprotein Precursors in the Gram-positive EubacteriumLactococcus lactis. Journal of Biological Chemistry, 2003, 278, 14739-14746.	1.6	34

#	Article	IF	CITATIONS
73	Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions. Microbial Cell Factories, 2016, 15, 57.	1.9	32
74	Metabolic Cross-talk Between Human Bronchial Epithelial Cells and Internalized Staphylococcus aureus as a Driver for Infection*. Molecular and Cellular Proteomics, 2019, 18, 892a-908.	2.5	32
75	There's no place like OM: Vesicular sorting and secretion of the peptidylarginine deiminase of <i>Porphyromonas gingivalis</i> . Virulence, 2018, 9, 459-467.	1.8	31
76	The twinâ€arginine translocation (Tat) systems from <i>Bacillus subtilis</i> display a conserved mode of complex organization and similar substrate recognition requirements. FEBS Journal, 2009, 276, 232-243.	2.2	30
77	High genetic diversity of <i><scp>S</scp>taphylococcus aureus</i> strains colonizing patients with epidermolysis bullosa. Experimental Dermatology, 2012, 21, 463-466.	1.4	30
78	Preclinical studies and prospective clinical applications for bacteria-targeted imaging: the future is bright. Clinical and Translational Imaging, 2016, 4, 253-264.	1.1	30
79	Targeted optical fluorescence imaging: a meta-narrative review and future perspectives. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4272-4292.	3.3	29
80	Genetic or chemical protease inhibition causes significant changes in the <i>Bacillus subtilis</i> exoproteome. Proteomics, 2008, 8, 2704-2713.	1.3	28
81	Cell Physiology and Protein Secretion of <i>Bacillus licheniformis</i> Compared to <i> Bacillus subtilis</i> . Journal of Molecular Microbiology and Biotechnology, 2009, 16, 53-68.	1.0	28
82	The reduction in small ribosomal subunit abundance in ethanol-stressed cells of Bacillus subtilis is mediated by a SigB-dependent antisense RNA. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2553-2559.	1.9	27
83	Noninvasive optical and nuclear imaging of Staphylococcus-specific infection with a human monoclonal antibody-based probe. Virulence, 2018, 9, 262-272.	1.8	27
84	Microbial protein cell factories fight back?. Trends in Biotechnology, 2022, 40, 576-590.	4.9	27
85	The Bacillus secretion stress response is an indicator for alpha-amylase production levels. Letters in Applied Microbiology, 2004, 39, 65-73.	1.0	26
86	Novel Twin-Arginine Translocation Pathway-Dependent Phenotypes of <i>Bacillus subtilis</i> Unveiled by Quantitative Proteomics. Journal of Proteome Research, 2013, 12, 796-807.	1.8	26
87	Definition of the ÏfW Regulon of Bacillus subtilis in the Absence of Stress. PLoS ONE, 2012, 7, e48471.	1.1	26
88	Salt Sensitivity of Minimal Twin Arginine Translocases. Journal of Biological Chemistry, 2011, 286, 43759-43770.	1.6	25
89	Genetic features of livestock-associated Staphylococcus aureus ST9 isolates from Chinese pigs that carry the lsa(E) gene for quinupristin/dalfopristin resistance. International Journal of Medical Microbiology, 2016, 306, 722-729.	1.5	25
90	<i>Bdellovibrio bacteriovorus</i> : a potential â€~living antibiotic' to control bacterial pathogens. Critical Reviews in Microbiology, 2021, 47, 630-646.	2.7	25

JAN MAARTEN VAN DIJL

#	Article	IF	CITATIONS
91	Epidemiology of Staphylococcus aureus in a burn unit of a tertiary care center in Ghana. PLoS ONE, 2017, 12, e0181072.	1.1	25
92	Degradation of Extracytoplasmic Catalysts for Protein Folding in Bacillus subtilis. Applied and Environmental Microbiology, 2014, 80, 1463-1468.	1.4	24
93	Genetic loci of Staphylococcus aureus associated with anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides. Scientific Reports, 2017, 7, 12211.	1.6	24
94	Recombinant protein secretion by <i>Bacillus subtilis</i> and <i>Lactococcus lactis</i> : pathways, applications, and innovation potential. Essays in Biochemistry, 2021, 65, 187-195.	2.1	24
95	Specific Targeting of the Metallophosphoesterase YkuE to the Bacillus Cell Wall Requires the Twin-arginine Translocation System. Journal of Biological Chemistry, 2012, 287, 29789-29800.	1.6	23
96	Staphylococcus aureus spa type t437: identification of the most dominant community-associated clone from Asia across Europe. Clinical Microbiology and Infection, 2015, 21, 163.e1-163.e8.	2.8	23
97	Topography of Distinct Staphylococcus aureus Types in Chronic Wounds of Patients with Epidermolysis Bullosa. PLoS ONE, 2013, 8, e67272.	1.1	23
98	lgG4 Subclass-Specific Responses to Staphylococcus aureus Antigens Shed New Light on Host-Pathogen Interaction. Infection and Immunity, 2015, 83, 492-501.	1.0	22
99	Ultrafast Photoclick Reaction for Selective ¹⁸ F-Positron Emission Tomography Tracer Synthesis in Flow. Journal of the American Chemical Society, 2021, 143, 10041-10047.	6.6	22
100	TatAc, the Third TatA Subunit of <i>Bacillus subtilis</i> , Can Form Active Twin-Arginine Translocases with the TatCd and TatCy Subunits. Applied and Environmental Microbiology, 2012, 78, 4999-5001.	1.4	21
101	Genetic Diversity of Staphylococcus aureus in Buruli Ulcer. PLoS Neglected Tropical Diseases, 2015, 9, e0003421.	1.3	21
102	Human antibody responses against non-covalently cell wall-bound Staphylococcus aureus proteins. Scientific Reports, 2018, 8, 3234.	1.6	21
103	Relative contributions of non-essential Sec pathway components and cell envelope-associated proteases to high-level enzyme secretion by Bacillus subtilis. Microbial Cell Factories, 2020, 19, 52.	1.9	21
104	A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis. Journal of Biotechnology, 2014, 191, 139-149.	1.9	20
105	Low anti-staphylococcal IgG responses in granulomatosis with polyangiitis patients despite long-term Staphylococcus aureus exposure. Scientific Reports, 2015, 5, 8188.	1.6	20
106	Antibiotic Resistance Plasmids Cointegrated into a Megaplasmid Harboring the <i>bla</i> _{OXA-427} Carbapenemase Gene. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	20
107	Dropping anchor: attachment of peptidylarginine deiminase via A-LPS to secreted outer membrane vesicles of Porphyromonas gingivalis. Scientific Reports, 2018, 8, 8949.	1.6	20
108	Ultrastructural characterisation of Bacillus subtilis TatA complexes suggests they are too small to form homooligomeric translocation pores. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1811-1819.	1.9	19

JAN MAARTEN VAN DIJL

#	Article	IF	CITATIONS
109	Efficient production of secreted staphylococcal antigens in a non-lysing and proteolytically reduced Lactococcus lactis strain. Applied Microbiology and Biotechnology, 2014, 98, 10131-10141.	1.7	19
110	Twin-Arginine Protein Translocation. Current Topics in Microbiology and Immunology, 2016, 404, 69-94.	0.7	19
111	In vitro imaging of bacteria using 18F-fluorodeoxyglucose micro positron emission tomography. Scientific Reports, 2017, 7, 4973.	1.6	19
112	Conserved Citrullinating Exoenzymes in <i>Porphyromonas</i> Species. Journal of Dental Research, 2018, 97, 556-562.	2.5	19
113	Signatures of cytoplasmic proteins in the exoproteome distinguish community- and hospital-associated methicillin-resistant <i>Staphylococcus aureus</i> USA300 lineages. Virulence, 2017, 8, 891-907.	1.8	19
114	Multimodal imaging guides surgical management in a preclinical spinal implant infection model. JCI Insight, 2019, 4, .	2.3	19
115	Gingimaps: Protein Localization in the Oral Pathogen <i>Porphyromonas gingivalis</i> . Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	18
116	Microbial growth on the edge of desiccation. Environmental Microbiology, 2011, 13, 2328-2335.	1.8	17
117	Active Immunization with an Octa-Valent Staphylococcus aureus Antigen Mixture in Models of S. aureus Bacteremia and Skin Infection in Mice. PLoS ONE, 2015, 10, e0116847.	1.1	17
118	A Tat ménage à trois — The role of Bacillus subtilis TatAc in twin-arginine protein translocation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2745-2753.	1.9	17
119	Inhibition of Rho Activity Increases Expression of SaeRS-Dependent Virulence Factor Genes in Staphylococcus aureus, Showing a Link between Transcription Termination, Antibiotic Action, and Virulence. MBio, 2018, 9, .	1.8	16
120	Exoproteome Heterogeneity among Closely Related <i>Staphylococcus aureus</i> t437 Isolates and Possible Implications for Virulence. Journal of Proteome Research, 2019, 18, 2859-2874.	1.8	16
121	Mapping the twin-arginine protein translocation network of <i>Bacillus subtilis</i> . Proteomics, 2013, 13, 800-811.	1.3	15
122	Molecular Imaging of Infectious and Inflammatory Diseases: A Terra Incognita. Journal of Nuclear Medicine, 2015, 56, 659-661.	2.8	15
123	Virulence potential of Staphylococcus aureus isolates from Buruli ulcer patients. International Journal of Medical Microbiology, 2017, 307, 223-232.	1.5	15
124	From the wound to the bench: exoproteome interplay between wound-colonizing <i>Staphylococcus aureus</i> strains and co-existing bacteria. Virulence, 2018, 9, 363-378.	1.8	15
125	<i>Staphylococcus aureus</i> cell wall maintenance – the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiology Reviews, 2022, 46, .	3.9	15
126	Versatile vector suite for the extracytoplasmic production and purification of heterologous His-tagged proteins in Lactococcus lactis. Applied Microbiology and Biotechnology, 2015, 99, 9037-9048.	1.7	14

#	Article	IF	CITATIONS
127	Image-guided in situ detection of bacterial biofilms in a human prosthetic knee infection model: a feasibility study for clinical diagnosis of prosthetic joint infections. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 757-767.	3.3	14
128	Co-factor Insertion and Disulfide Bond Requirements for Twin-arginine Translocase-dependent Export of the Bacillus subtilis Rieske Protein QcrA. Journal of Biological Chemistry, 2014, 289, 13124-13131.	1.6	13
129	Adaptive immune response to lipoproteins of Staphylococcus aureus in healthy subjects. Proteomics, 2016, 16, 2667-2677.	1.3	13
130	A human monoclonal antibody that specifically binds and inhibits the staphylococcal complement inhibitor protein SCIN. Virulence, 2018, 9, 70-82.	1.8	13
131	Tryptic Shaving of <i>Staphylococcus aureus</i> Unveils Immunodominant Epitopes on the Bacterial Cell Surface. Journal of Proteome Research, 2020, 19, 2997-3010.	1.8	13
132	Novel in vivo mouse model of shoulder implant infection. Journal of Shoulder and Elbow Surgery, 2020, 29, 1412-1424.	1.2	13
133	Degradation of the Twin-Arginine Translocation Substrate YwbN by Extracytoplasmic Proteases of Bacillus subtilis. Applied and Environmental Microbiology, 2012, 78, 7801-7804.	1.4	12
134	A comparison of Percutaneous femoral access in Endovascular Repair versus Open femoral access (PiERO): study protocol for a randomized controlled trial. Trials, 2015, 16, 408.	0.7	12
135	Molecular Characterization of Staphylococcus aureus Isolates Transmitted between Patients with Buruli Ulcer. PLoS Neglected Tropical Diseases, 2015, 9, e0004049.	1.3	12
136	Differential epitope recognition in the immunodominant staphylococcal antigen A of Staphylococcus aureus by mouse versus human IgG antibodies. Scientific Reports, 2017, 7, 8141.	1.6	12
137	Metabolic niche adaptation of community- and hospital-associated methicillin-resistant Staphylococcus aureus. Journal of Proteomics, 2019, 193, 154-161.	1.2	12
138	Exoproteomic profiling uncovers critical determinants for virulence of livestock-associated and human-originated <i>Staphylococcus aureus</i> ST398 strains. Virulence, 2020, 11, 947-963.	1.8	12
139	Fighting Staphylococcus aureus infections with light and photoimmunoconjugates. JCI Insight, 2020, 5, .	2.3	12
140	A mutation leading to super-assembly of twin-arginine translocase (Tat) protein complexes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1978-1986.	1.9	11
141	Intramembrane protease RasP boosts protein production in Bacillus. Microbial Cell Factories, 2017, 16, 57.	1.9	11
142	Methicillin Resistant Staphylococcus aureus Transmission in a Ghanaian Burn Unit: The Importance of Active Surveillance in Resource-Limited Settings. Frontiers in Microbiology, 2017, 8, 1906.	1.5	11
143	Ex Vivo Tracer Efficacy in Optical Imaging of Staphylococcus Aureus Nuclease Activity. Scientific Reports, 2018, 8, 1305.	1.6	10
144	Engineering Bacillus subtilis Cells as Factories: Enzyme Secretion and Value-added Chemical Production. Biotechnology and Bioprocess Engineering, 2020, 25, 872-885.	1.4	10

#	Article	IF	CITATIONS
145	Interactions between the foreign body reaction and <i>Staphylococcus aureus</i> biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces. Critical Reviews in Microbiology, 2022, 48, 624-640.	2.7	10
146	Clobal analysis of the impact of linezolid onto virulence factor production in S. aureus USA300. International Journal of Medical Microbiology, 2016, 306, 131-140.	1.5	9
147	An ancient family of mobile genomic islands introducing cephalosporinase and carbapenemase genes in <i>Enterobacteriaceae</i> . Virulence, 2018, 9, 1377-1389.	1.8	9
148	Comparison of two fluorescent probes in preclinical non-invasive imaging and image-guided debridement surgery of Staphylococcal biofilm implant infections. Scientific Reports, 2021, 11, 1622.	1.6	9
149	The population structure of Staphylococcus aureus in China and Europe assessed by multiple-locus variable number tandem repeat analysis; clues to geographical origins of emergence and dissemination. Clinical Microbiology and Infection, 2016, 22, 60.e1-60.e8.	2.8	8
150	The Twin-Arginine Pathway for Protein Secretion. EcoSal Plus, 2019, 8, .	2.1	8
151	Time-resolved analysis of <i>Staphylococcus aureus</i> invading the endothelial barrier. Virulence, 2020, 11, 1623-1639.	1.8	8
152	Membrane Modulation of Super-Secreting "midiBacillus―Expressing the Major Staphylococcus aureus Antigen – A Mass-Spectrometry-Based Absolute Quantification Approach. Frontiers in Bioengineering and Biotechnology, 2020, 8, 143.	2.0	8
153	A Lactococcus lactis expression vector set with multiple affinity tags to facilitate isolation and direct labeling of heterologous secreted proteins. Applied Microbiology and Biotechnology, 2017, 101, 8139-8149.	1.7	7
154	Ariadne's Thread in the Analytical Labyrinth of Membrane Proteins: Integration of Targeted and Shotgun Proteomics for Global Absolute Quantification of Membrane Proteins. Analytical Chemistry, 2019, 91, 11972-11980.	3.2	7
155	Differential expression of a prophage-encoded glycocin and its immunity protein suggests a mutualistic strategy of a phage and its host. Scientific Reports, 2019, 9, 2845.	1.6	7
156	Determining the Virulence Properties of Escherichia coli ST131 Containing Bacteriocin-Encoding Plasmids Using Short- and Long-Read Sequencing and Comparing Them with Those of Other E. coli Lineages. Microorganisms, 2019, 7, 534.	1.6	7
157	The effect of calcium palmitate on bacteria associated with infant gut microbiota. MicrobiologyOpen, 2021, 10, e1187.	1.2	7
158	GP4: an integrated Gram-Positive Protein Prediction Pipeline for subcellular localization mimicking bacterial sorting. Briefings in Bioinformatics, 2021, 22, .	3.2	7
159	Targeted Antimicrobial Photodynamic Therapy of Biofilm-Embedded and Intracellular Staphylococci with a Phage Endolysin's Cell Binding Domain. Microbiology Spectrum, 2022, 10, e0146621.	1.2	7
160	A Facile and Reproducible Synthesis of Near-Infrared Fluorescent Conjugates with Small Targeting Molecules for Microbial Infection Imaging. ACS Omega, 2020, 5, 22071-22080.	1.6	6
161	Functional association of the stress-responsive LiaH protein and the minimal TatAyCy protein translocase in Bacillus subtilis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118719.	1.9	6
162	Molecular typing and antimicrobial resistance profiling of 33 mastitis-related Staphylococcus aureus isolates from cows in the Comarca Lagunera region of Mexico. Scientific Reports, 2021, 11, 6912.	1.6	6

#	Article	IF	CITATIONS
163	Enrichment of Cell Surface-Associated Proteins in Gram-Positive Bacteria by Biotinylation or Trypsin Shaving for Mass Spectrometry Analysis. Methods in Molecular Biology, 2018, 1841, 35-43.	0.4	5
164	Double trouble: Bacillus depends on a functional Tat machinery to avoid severe oxidative stress and starvation upon entry into a NaCl-depleted environment. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118914.	1.9	5
165	Redirected Stress Responses in a Genome-Minimized â€ [~] midi <i>Bacillus</i> ' Strain with Enhanced Capacity for Protein Secretion. MSystems, 2021, 6, e0065521.	1.7	5
166	Connections between Exoproteome Heterogeneity and Virulence in the Oral Pathogen Aggregatibacter actinomycetemcomitans. MSystems, 2022, 7, .	1.7	5
167	The Eubacterial Lipoprotein-Specific (Type II) Signal Peptidase. The Enzymes, 2002, 22, 3-26.	0.7	4
168	Towards an antimicrobial â€~microglove'. Scientific Reports, 2015, 5, 16679.	1.6	4
169	Heterogeneous antimicrobial activity in broncho-alveolar aspirates from mechanically ventilated intensive care unit patients. Virulence, 2019, 10, 879-891.	1.8	4
170	The smart activatable P2&3TT probe allows accurate, fast, and highly sensitive detection of Staphylococcus aureus in clinical blood culture samples. Scientific Reports, 2020, 10, 19216.	1.6	4
171	Interaction of <i>Staphylococcus aureus</i> and Host Cells upon Infection of Bronchial Epithelium during Different Stages of Regeneration. ACS Infectious Diseases, 2020, 6, 2279-2290.	1.8	4
172	Sputum Proteome Signatures of Mechanically Ventilated Intensive Care Unit Patients Distinguish Samples with or without Anti-pneumococcal Activity. MSystems, 2021, 6, .	1.7	4
173	Differential binding of human and murine IgGs to catalytic and cell wall binding domains of Staphylococcus aureus peptidoglycan hydrolases. Scientific Reports, 2021, 11, 13865.	1.6	4
174	No Obvious Role for Suspicious Oral Pathogens in Arthritis Development. International Journal of Environmental Research and Public Health, 2021, 18, 9560.	1.2	4
175	Empowering antimicrobial photodynamic therapy of Staphylococcus aureus infections with potassium iodide. Journal of Photochemistry and Photobiology B: Biology, 2021, 225, 112334.	1.7	4
176	Bacteria-targeted fluorescence imaging of extracted osteosynthesis devices for rapid visualization of fracture-related infections. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2276-2289.	3.3	4
177	Fighting Acinetobacter baumannii infections with the acylase PvdQ. Microbes and Infection, 2022, , 104951.	1.0	4
178	SppI Forms a Membrane Protein Complex with SppA and Inhibits Its Protease Activity in Bacillus subtilis. MSphere, 2020, 5, .	1.3	3
179	A Conserved Class II Type Thioester Domain-Containing Adhesin Is Required for Efficient Conjugation in Bacillus subtilis. MBio, 2021, 12, .	1.8	3

180 The Twin-Arginine Pathway for Protein Secretion. , 2019, , 53-66.

#	Article	IF	CITATIONS
181	Proteomic Charting of Imipenem Adaptive Responses in a Highly Carbapenem Resistant Clinical Enterobacter roggenkampii Isolate. Antibiotics, 2021, 10, 501.	1.5	1
182	Proteins sorted by â€~chaos and disorder'. Nature Microbiology, 2021, 6, 973-974.	5.9	1
183	An Efficient UV-C Disinfection Approach and Biological Assessment Strategy for Microphones. Applied Sciences (Switzerland), 2022, 12, 7239.	1.3	1
184	Yeast Infections after Esophagectomy: A Retrospective Analysis. Scientific Reports, 2020, 10, 4343.	1.6	0