Kan Zhuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5118704/publications.pdf

Version: 2024-02-01

13	631	1040056	1281871
papers	citations	h-index	g-index
13	13	13	512
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The effector MJ-10A08 of Meloidogyne javanica is required for parasitism that suppressed programmed cell death in Nicotiana benthamiana. Nematology, 2022, 24, 1-14.	0.6	0
2	A Meloidogyne graminicola Pectate Lyase Is Involved in Virulence and Activation of Host Defense Responses. Frontiers in Plant Science, 2021, 12, 651627.	3.6	9
3	Transcriptome analysis of nematode-responsive genes in two susceptible Indica rice cultivars. Nematology, 2021, -1, 1-16.	0.6	0
4	The <i>Meloidogyne graminicola</i> effector MgMO289 targets a novel copper metallochaperone to suppress immunity in rice. Journal of Experimental Botany, 2021, 72, 5638-5655.	4.8	17
5	The <i>Meloidogyne javanica</i> effector Mj2G02 interferes with jasmonic acid signalling to suppress cell death and promote parasitism in <i>Arabidopsis</i> . Molecular Plant Pathology, 2021, 22, 1288-1301.	4.2	22
6	Arabidopsis thaliana as a model plant to study host-Meloidogyne graminicola interactions. Nematology, 2020, 22, 1015-1024.	0.6	7
7	Role of Protein Glycosylation in Host-Pathogen Interaction. Cells, 2020, 9, 1022.	4.1	93
8	A <i>Meloidogyne graminicola</i> Câ€type lectin, Mg01965, is secreted into the host apoplast to suppress plant defence and promote parasitism. Molecular Plant Pathology, 2019, 20, 346-355.	4.2	31
9	A novel <i>Meloidogyne graminicola</i> effector, MgMO237, interacts with multiple host defenceâ€related proteins to manipulate plant basal immunity and promote parasitism. Molecular Plant Pathology, 2018, 19, 1942-1955.	4.2	70
10	A novel <i>Meloidogyne enterolobii</i> effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Molecular Plant Pathology, 2017, 18, 45-54.	4.2	76
11	A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. PLoS Pathogens, 2017, 13, e1006301.	4.7	90
12	A novel nematode effector suppresses plant immunity by activating host reactive oxygen speciesâ€scavenging system. New Phytologist, 2016, 209, 1159-1173.	7.3	148
13	A Novel Effector Protein, MJ-NULG1a, Targeted to Giant Cell Nuclei Plays a Role in <i>Meloidogyne javanica</i> Parasitism. Molecular Plant-Microbe Interactions, 2013, 26, 55-66.	2.6	68