Dong-Wook Kim

List of Publications by Citations

Source: https://exaly.com/author-pdf/5118424/dong-wook-kim-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

155
papers3,423
citations29
h-index51
g-index171
ext. papers3,766
ext. citations4.6
avg, IF4.93
L-index

#	Paper	IF	Citations
155	Transparent flexible graphene triboelectric nanogenerators. <i>Advanced Materials</i> , 2014 , 26, 3918-25	24	313
154	Random Circuit Breaker Network Model for Unipolar Resistance Switching. <i>Advanced Materials</i> , 2008 , 20, 1154-1159	24	302
153	Occurrence of both unipolar memory and threshold resistance switching in a NiO film. <i>Physical Review Letters</i> , 2009 , 102, 026801	7.4	203
152	Effects of heat dissipation on unipolar resistance switching in PtNiOPt capacitors. <i>Applied Physics Letters</i> , 2008 , 92, 183507	3.4	128
151	Electrode-dependent electrical properties of metal/Nb-doped SrTiO3 junctions. <i>Journal of Applied Physics</i> , 2008 , 103, 054106	2.5	103
150	Highly selective spectral response with enhanced responsivity of n-ZnO/p-Si radial heterojunction nanowire photodiodes. <i>Applied Physics Letters</i> , 2011 , 98, 033102	3.4	83
149	Role of structural defects in the unipolar resistive switching characteristics of PtNiOBt structures. <i>Applied Physics Letters</i> , 2008 , 93, 042102	3.4	72
148	Ultrathin TiO2 Films on ZnO Electron-Collecting Layers of Inverted Organic Solar Cell. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 21517-21520	3.8	63
147	Fabrication and electrical characteristics of dual-gate ZnO nanorod metal®xide semiconductor field-effect transistors. <i>Nanotechnology</i> , 2006 , 17, S327-S331	3.4	58
146	Fabrication and photoluminescent properties of heteroepitaxial ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1516-9	3.4	55
145	Investigations on the nature of observed ferromagnetism and possible spin polarization in Co-doped anatase TiO2 thin films. <i>Journal of Applied Physics</i> , 2003 , 93, 6125-6132	2.5	52
144	Capturing wetting states in nanopatterned silicon. ACS Nano, 2014, 8, 885-93	16.7	51
143	Roles of the first atomic layers in growth of SrTiO3 films on LaAlO3 substrates. <i>Applied Physics Letters</i> , 1999 , 74, 2176-2178	3.4	50
142	Multiple Sharp Bendings of Carbon Nanotubes during Growth to Produce Zigzag Morphology. <i>Nano Letters</i> , 2004 , 4, 1781-1784	11.5	49
141	Epitaxial Brownmillerite Oxide Thin Films for Reliable Switching Memory. <i>ACS Applied Materials</i> & Samp; Interfaces, 2016 , 8, 7902-11	9.5	48
140	Printable, wide band-gap chalcopyrite thin films for power generating window applications. <i>Scientific Reports</i> , 2014 , 4, 4408	4.9	47
139	Surface versus bulk characterizations of electronic inhomogeneity in a VO2 thin film. <i>Physical Review B</i> , 2007 , 76,	3.3	46

(2000-2018)

138	Layer-by-layer assembled graphene multilayers on multidimensional surfaces for highly durable, scalable, and wearable triboelectric nanogenerators. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3108-31	1 5 3	44	
137	Photophysical, amplified spontaneous emission and charge transport properties of oligofluorene derivatives in thin films. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16941-56	3.6	43	
136	Superparamagnetism in Co-ion-implanted anatase TiO2 thin films and effects of postannealing. <i>Applied Physics Letters</i> , 2003 , 83, 4574-4576	3.4	39	
135	Incident light adjustable solar cell by periodic nanolens architecture. <i>Scientific Reports</i> , 2014 , 4, 6879	4.9	38	
134	Resistance state-dependent barrier inhomogeneity and transport mechanisms in resistive-switching Pt/SrTiO3 junctions. <i>Applied Physics Letters</i> , 2011 , 98, 132905	3.4	36	
133	Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2105-2113	13	33	
132	Initial growth behavior and resulting microstructural properties of heteroepitaxial ZnO thin films on sapphire (0001) substrates. <i>Applied Physics Letters</i> , 2007 , 90, 011906	3.4	32	
131	Achieving 14.4% Alcohol-Based Solution-Processed Cu(In,Ga)(S,Se) Thin Film Solar Cell through Interface Engineering. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 9894-9899	9.5	31	
130	Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells. <i>Scientific Reports</i> , 2015 , 5, 9256	4.9	30	
129	Chalcogenization-Derived Band Gap Grading in Solution-Processed CuIn(x)Ga(1-x)(Se,S)IThin-Film Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 27391-6	9.5	30	
128	Evolution of local work function in epitaxial VO2 thin films spanning the metal-insulator transition. <i>Applied Physics Letters</i> , 2012 , 101, 191605	3.4	30	
127	Resistance switching in epitaxial SrCoOx thin films. <i>Applied Physics Letters</i> , 2014 , 105, 063507	3.4	29	
126	Fractal Nature of Metallic and Insulating Domain Configurations in a VO2 Thin Film Revealed by Kelvin Probe Force Microscopy. <i>Scientific Reports</i> , 2015 , 5, 10417	4.9	28	
125	Current transport in Pt Schottky contacts toa-plane n-type GaN. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 165102	3	28	
124	Effect of the short collection length in silicon microscale wire solar cells. <i>Applied Physics Letters</i> , 2013 , 102, 193904	3.4	27	
123	Silver Schottky contacts to a-plane bulk ZnO. <i>Journal of Applied Physics</i> , 2010 , 108, 074514	2.5	27	
122	Magnetization reversal of a structurally disordered manganite thin film with perpendicular anisotropy. <i>Physical Review B</i> , 2005 , 71,	3.3	27	
121	Electrical properties of SrVO3/SrTiO3 superlattices grown by laser molecular beam epitaxy. <i>Solid State Communications</i> , 2000 , 114, 473-476	1.6	27	

120	Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure. <i>Applied Physics Letters</i> , 2012 , 100, 113505	3.4	26
119	Nanoscale resistive switching Schottky contacts on self-assembled Pt nanodots on SrTiO(3). <i>ACS Applied Materials & Applied & Applied Materials & Applied & </i>	9.5	26
118	Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications. <i>Nanoscale</i> , 2014 , 6, 9568-73	7.7	25
117	Structural and nonlinear optical properties of epitaxial LiNbO3 films grown by pulsed laser deposition. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1998 , 56, 251-255	3.1	25
116	Ambient effects on electric-field-induced local charge modification of TiO2. <i>Applied Physics Letters</i> , 2012 , 100, 022901	3.4	24
115	Band Alignment at Au/MoS2 Contacts: Thickness Dependence of Exfoliated Flakes. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 22517-22522	3.8	23
114	Enhanced surface-and-interface coupling in Pd-nanoparticle-coated LaAlO3/SrTiO3 heterostructures: strong gas- and photo-induced conductance modulation. <i>Scientific Reports</i> , 2015 , 5, 8531	4.9	23
113	Interface State Effects on Resistive Switching Behaviors of Pt/Nb-Doped SrTiO3Single-Crystal Schottky Junctions. <i>ECS Journal of Solid State Science and Technology</i> , 2014 , 3, N95-N101	2	23
112	Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material. <i>Nanoscale</i> , 2019 , 11, 19586-19594	7.7	22
111	Highly flexible and semi-transparent Ag ū u alloy electrodes for high performance flexible thin film heaters. <i>RSC Advances</i> , 2017 , 7, 45484-45494	3.7	21
110	Effect of oxygen plasma treatment on the electrical properties in Ag/bulk ZnO Schottky diodes. <i>Vacuum</i> , 2014 , 101, 92-97	3.7	21
109	Interfacial reactions and resistive switching behaviors of metal/NiO/metal structures. <i>Applied Physics Letters</i> , 2009 , 94, 022906	3.4	21
108	Enhanced organic solar cells efficiency through electronic and electro-optic effects resulting from charge transfers in polymer hole transport blends. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4252-4263	13	20
107	Surface-plasmon-enhanced visible-light emission of ZnO/Ag grating structures. <i>Optics Express</i> , 2011 , 19, 5895-901	3.3	20
106	Epitaxial growth and the magnetic properties of orthorhombic YTiO3 thin films. <i>Applied Physics Letters</i> , 2006 , 89, 182512	3.4	20
105	Translucent Photodetector with Blended Nanowires-Metal Oxide Transparent Selective Electrode Utilizing Photovoltaic and Pyro-Phototronic Coupling Effect. <i>Small</i> , 2019 , 15, e1804346	11	19
104	Influence of perfluorinated ionomer in PEDOT:PSS on the rectification and degradation of organic photovoltaic cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16012-16028	13	19
103	Comparative experimental and simulative investigations of radial pli junction Si microwire array solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 103, 93-97	6.4	19

(1998-2017)

102	Direct investigation on energy bandgap of Si added ZnSnO system for stability enhancement by X-ray photoelectron spectroscopy. <i>Journal of Alloys and Compounds</i> , 2017 , 715, 9-15	5.7	17	
101	Optical and electrical properties of Cu-based all oxide semi-transparent photodetector. <i>Applied Physics Letters</i> , 2016 , 109, 101902	3.4	17	
100	Exciton diffusion in near-infrared absorbing solution-processed organic thin films. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 2867-72	3.6	16	
99	Effective light management of three-dimensionally patterned transparent conductive oxide layers. <i>Applied Physics Letters</i> , 2012 , 101, 143904	3.4	16	
98	Broad-Band Photocurrent Enhancement in MoS Layers Directly Grown on Light-Trapping Si Nanocone Arrays. <i>ACS Applied Materials & Acs Applied & </i>	9.5	15	
97	A comparative study of solution-processed low- and high-band-gap chalcopyrite thin-film solar cells. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 135105	3	15	
96	Surface-concentrated light and efficient carrier collection in microhole-patterned Si solar cells. <i>Optics Express</i> , 2013 , 21 Suppl 4, A607-15	3.3	15	
95	Selective photochemical synthesis of Ag nanoparticles on position-controlled ZnO nanorods for the enhancement of yellow-green light emission. <i>Nanoscale</i> , 2015 , 7, 20717-24	7.7	14	
94	Conductance spectroscopy of resistive switching Pt/Nb:STO single crystal Schottky junctions in air and vacuum. <i>Current Applied Physics</i> , 2013 , 13, 505-509	2.6	14	
93	Wafer-scale surface roughening for enhanced light extraction of high power AlGaInP-based light-emitting diodes. <i>Optics Express</i> , 2014 , 22 Suppl 3, A723-34	3.3	14	
92	Recombination in Cu(In,Ga)Se2 thin-film solar cells containing ordered vacancy compound phases. <i>Thin Solid Films</i> , 2013 , 546, 358-361	2.2	14	
91	Local current Noltage behaviors of preferentially and randomly textured Cu(In,Ga)Se2 thin films investigated by conductive atomic force microscopy. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 104, 1189-1194	2.6	14	
90	Photoluminescence induced by thermal annealing in SrTiO3 thin film. <i>Applied Physics Letters</i> , 2009 , 95, 241906	3.4	14	
89	Influence of shunt conduction on determining the dominant recombination processes in CIGS thin-film solar cells. <i>Current Applied Physics</i> , 2013 , 13, 37-40	2.6	13	
88	A silicon nanowire photodetector using Au plasmonic nanoantennas. <i>Nano Convergence</i> , 2014 , 1,	9.2	13	
87	Magnetic properties of insulating RTiO3 thin films. <i>Journal of Electroceramics</i> , 2009 , 22, 216-220	1.5	13	
86	Domain nucleation and growth of La0.7Ca0.3MnO3/LaAlO3 films studied by low temperature magnetic force microscopy. <i>Journal of Applied Physics</i> , 2003 , 93, 8319-8321	2.5	13	
85	Structural and Optical Properties of LiNbO3Films Grown by Pulsed Laser Deposition with a Shadow Mask. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, 2016-2020	1.4	13	

84	Influence of Gas Adsorption and Gold Nanoparticles on the Electrical Properties of CVD-Grown MoS2 Thin Films. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 21612-7	9.5	13
83	Plasmon-Enhanced Surface Photovoltage of ZnO/Ag Nanogratings. <i>Scientific Reports</i> , 2015 , 5, 16727	4.9	12
82	Visualization of local phase transition behaviors near dislocations in epitaxial VO2/TiO2 thin films. <i>Applied Physics Letters</i> , 2015 , 107, 171603	3.4	12
81	Abnormal resistance switching behaviours of NiO thin films: possible occurrence of both formation and rupturing of conducting channels. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 015506	3	12
80	Influence of microstructures on exchange bias behaviors of La0.7Sr0.3MnO3/La0.33Ca0.67MnO3 bilayers. <i>Solid State Communications</i> , 2003 , 125, 305-309	1.6	12
79	Enhanced metallic properties of SrRuO3 thin films via kinetically controlled pulsed laser epitaxy. <i>Applied Physics Letters</i> , 2016 , 109, 161902	3.4	12
78	High Photoresponse in Conformally Grown Monolayer MoS on a Rugged Substrate. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 40824-40830	9.5	12
77	Upconversion-Triggered Charge Separation in Polymer Semiconductors. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 364-369	6.4	11
76	Cocktails of paste coatings for performance enhancement of CuInGaS(2) thin-film solar cells. <i>ACS Applied Materials & Discourse (Control of CuinGaS)</i> Applied Materials & Discourse (Control of CuinGaS) and Discourse (Control of CuinGaS) are Discourse (Control of CuinGaS). Actual and Discourse (Control of CuinGaS) and Discourse (Control of CuinGaS) and Discourse (Co	9.5	11
75	Inhomogeneous barrier and hysteretic transport properties of Pt/SrTiO3junctions. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 055306	3	11
74	? Bipolar resistive switching characteristics of Cu/TaOx/Pt structures. <i>Journal of the Korean Physical Society</i> , 2010 , 56, 846-850	0.6	11
73	Asymmetrically Coupled Plasmonic Core and Nanotriplet Satellites. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 18659-18667	3.8	10
72	Structural Properties and Resistance-Switching Behavior of Thermally Grown NiO Thin Films. Japanese Journal of Applied Physics, 2008, 47, 1635-1638	1.4	10
71	Pyroelectric electron emissions and domain inversion of LiNbO3 single crystals. <i>Physica B: Condensed Matter</i> , 2004 , 352, 200-205	2.8	10
70	Facile Fabrication of a Two-Dimensional TMD/Si Heterojunction Photodiode by Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 36136-36143	9.5	10
69	Enhancing the Performance of Surface Plasmon Resonance Biosensor via Modulation of Electron Density at the Graphene Gold Interface. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800433	4.6	10
68	Polarization-independent light emission enhancement of ZnO/Ag nanograting via surface plasmon polariton excitation and cavity resonance. <i>ACS Applied Materials & Description and Capity Resonance and</i>	9.5	9
67	Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 27112-8	3.6	9

(2009-2007)

66	Growth behaviour of ZnO thin films and nanowires on SrTiO3 substrates. <i>Solid State Communications</i> , 2007 , 143, 140-143	1.6	9	
65	Pyroelectric Electron Emission Behaviors of Congruent and Stoichiometric Lithium Niobate Single Crystals. <i>Journal of Electroceramics</i> , 2004 , 13, 293-297	1.5	9	
64	Doping-level Dependences of Switching Speeds and the Retention Characteristics of Resistive Switching Pt/SrTiO3 Junctions. <i>Journal of the Korean Physical Society</i> , 2010 , 57, 1432-1436	0.6	9	
63	Mie resonance-mediated antireflection effects of Si nanocone arrays fabricated on 8-in. wafers using a nanoimprint technique. <i>Nanoscale Research Letters</i> , 2015 , 10, 164	5	8	
62	Beneficial roles of Al back reflectors in optical absorption of Si nanowire array solar cells. <i>Journal of Applied Physics</i> , 2013 , 114, 093516	2.5	8	
61	Interface chemistry and electrical properties of SrVO3/LaAlO3 heterostructures. <i>Journal of Applied Physics</i> , 2000 , 88, 7056-7059	2.5	8	
60	Atomic control of homoepitaxial SrTiO3 films using laser molecular beam epitaxy. <i>Physica C:</i> Superconductivity and Its Applications, 1999 , 313, 246-254	1.3	8	
59	Boosting Solar Cell Performance via Centrally Localized Ag in Solution-Processed Cu(In,Ga)(S,Se) Thin Film Solar Cells. <i>ACS Applied Materials & Enterfaces</i> , 2020 , 12, 36082-36091	9.5	8	
58	Morphological-Electrical Property Relation in Cu(In,Ga)(S,Se) Solar Cells: Significance of Crystal Grain Growth and Band Grading by Potassium Treatment. <i>Small</i> , 2020 , 16, e2003865	11	7	
57	MoS Monolayers on Au Nanodot Arrays: Surface Plasmon, Local Strain, and Interfacial Electronic Interaction. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3039-3044	6.4	7	
56	Interference-Enhanced Broadband Absorption of Monolayer MoS2 on Sub-100 nm Thick SiO2/Si Substrates: Reflection and Transmission Phase Changes at Interfaces. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701637	4.6	7	
55	Light-Induced Surface Potential Modification in MoS Monolayers on Au Nanostripe Arrays. <i>Scientific Reports</i> , 2019 , 9, 14434	4.9	7	
54	SiNx layers on nanostructured Si solar cells: Effective for optical absorption and carrier collection. <i>Applied Physics Letters</i> , 2015 , 107, 153101	3.4	7	
53	Reversible Resistance Switching Behaviors of Pt/NiO/Pt Structures. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, 5205-5207	1.4	7	
52	Patterned Pyroelectric Electron Emitters and their Feasibility Study for Lithography Applications. Japanese Journal of Applied Physics, 2003, 42, 3523-3525	1.4	7	
51	A simple chemical route for composition graded Cu(In,Ga)S2 thin film solar cells: multi-stage paste coating. <i>RSC Advances</i> , 2015 , 5, 103439-103444	3.7	6	
50	Tilted magnetization of a La0.7Sr0.3MnO3/LaAlO3 (001) thin film. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 280, 51-59	2.8	6	
49	Electronic Structure of the NiO $_{x}$ Film Fabricated by Using aThermal Oxidation Technique. <i>Journal of the Korean Physical Society</i> , 2009 , 55, 129-133	0.6	6	

48	MoS monolayers on Si and SiO nanocone arrays: influences of 3D dielectric material refractive index on 2D MoS optical absorption. <i>Nanoscale</i> , 2018 , 10, 18920-18925	7.7	6
47	Design of surface nanowire arrays for high efficiency thin (101th) Si solar cells. <i>Current Applied Physics</i> , 2015 , 15, 34-37	2.6	5
46	Mie Resonance-Modulated Spatial Distributions of Photogenerated Carriers in Poly(3-hexylthiophene-2,5-diyl)/Silicon Nanopillars. <i>Scientific Reports</i> , 2016 , 6, 29472	4.9	5
45	A comparative electrical transport study on Cu/n-type InP Schottky diode measured at 300 and 100 K. <i>Current Applied Physics</i> , 2016 , 16, 37-44	2.6	5
44	Influence of InAs quantum dots on the transport properties of GaAs-based solar cell devices. <i>Current Applied Physics</i> , 2014 , 14, 192-195	2.6	5
43	Influence of wetting state on optical reflectance spectra of Si nanopillar arrays. <i>Journal of Applied Physics</i> , 2015 , 118, 213102	2.5	5
42	Transport characteristics and surface potential distribution of electrically stressed TiO2 single crystals. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 102, 949-953	2.6	5
41	Prevention of Si-contaminated nanocone formation during plasma enhanced CVD growth of carbon nanotubes. <i>Carbon</i> , 2005 , 43, 835-840	10.4	5
40	Surface photovoltage characterizations of Si nanopillar arrays for verifying field-effect passivation using a SiNx layer. <i>Current Applied Physics</i> , 2016 , 16, 141-144	2.6	4
39	Novel architecture of plasmon excitation based on self-assembled nanoparticle arrays for photovoltaics. <i>ACS Applied Materials & Acs Applied &</i>	9.5	4
38	Influence of gas ambient on charge writing at the LaAlO//SrTiOlheterointerface. ACS Applied Materials & Materials & Interfaces, 2014, 6, 14037-42	9.5	4
37	Analysis of interface states and series resistance in Ag/m-plane ZnO Schottky diodes. <i>Journal of the Korean Physical Society</i> , 2013 , 63, 2034-2038	0.6	4
36	Electrical properties of Ag Schottky contacts to hydrothermally-grown polar and nonpolar bulk ZnO. <i>Journal of the Korean Physical Society</i> , 2012 , 61, 1314-1318	0.6	4
35	Transport behaviours and nanoscopic resistance profiles of electrically stressed Pt/TiO2/Ti planar junctions. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 505305	3	4
34	Scanning probe lithography for fabrication of Ti metal nanodot arrays. <i>Ultramicroscopy</i> , 2010 , 110, 737-	49.1	4
33	Properties of La0.7Sr0.3MnO3 thin films grown on gallium nitrides. <i>Solid State Communications</i> , 2002 , 121, 631-634	1.6	4
32	Resistive Switching and Transport Characteristics of Cu/a-Si/Si Devices. <i>Journal of the Korean Physical Society</i> , 2011 , 58, 1156-1159	0.6	4
31	Observation of Barrier Inhomogeneity in Pt/a-plane n-type GaN Schottky Contacts. <i>Journal of the Korean Physical Society</i> , 2011 , 58, 1356-1360	0.6	4

(2015-2020)

30	Opposite Polarity Surface Photovoltage of MoS Monolayers on Au Nanodot versus Nanohole Arrays. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 48991-48997	9.5	4	
29	Large Surface Photovoltage of WS2/MoS2 and MoS2/WS2 Vertical Hetero-bilayers. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 2601-2606	4	4	
28	Transparent conductor-embedding nanolens for Si solar cells. <i>Applied Physics Letters</i> , 2015 , 106, 15190	43.4	3	
27	Enhanced photoluminescence of MoS2Au nanostructures: Nanotriangle and nanohole arrays. <i>Current Applied Physics</i> , 2020 , 20, 703-706	2.6	3	
26	Conducting LaAlO3/SrTiO3 heterointerfaces on atomically-flat substrates prepared by deionized-water. <i>Scientific Reports</i> , 2016 , 6, 23621	4.9	3	
25	Modulation of electrical properties in Cu/n-type InP Schottky junctions using oxygen plasma treatment. <i>Semiconductor Science and Technology</i> , 2015 , 30, 125016	1.8	3	
24	Analysis of current transport properties in nonpolar a-plane ZnO-based Schottky diodes. <i>Journal of the Korean Physical Society</i> , 2014 , 65, 751-756	0.6	3	
23	Temperature-Dependent Electrical Characteristics of Ag Schottky Contacts to Differently Grown O-Polar Bulk ZnO. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2013 , 135,	2	3	
22	Time-Resolved Pump P robe Measurement of Optical Rotatory Dispersion in Chiral Metamaterial. <i>Advanced Optical Materials</i> , 2017 , 5, 1700141	8.1	2	
21	Routes for realizing high-performing Si solar cells by using periodic structures. <i>Materials Research Bulletin</i> , 2017 , 94, 92-99	5.1	2	
20	Electrical Properties of Au/n-GaN Schottky Junctions with an Atomic-Layer-Deposited Al2O3 Interlayer. <i>Journal of the Korean Physical Society</i> , 2018 , 73, 349-354	0.6	2	
19	Plasmonic Coupling in Three-Dimensional Au Nanoparticle Assemblies Fabricated by Anodic Aluminum Oxide Templates. <i>Journal of Nanomaterials</i> , 2013 , 2013, 1-6	3.2	2	
18	Schottky contacts to polar and nonpolar n-type GaN. <i>Journal of the Korean Physical Society</i> , 2012 , 60, 104-107	0.6	2	
17	Self-focused electron beams from pyroelectric LiNbO3 crystals and their pattern-replication capability. <i>Journal of Applied Physics</i> , 2004 , 96, 6884-6887	2.5	2	
16	Forward Current Transport Mechanism of Cu Schottky Barrier Formed on n-type Ge Wafer. <i>Transactions on Electrical and Electronic Materials</i> , 2015 , 16, 151-155	1.7	2	
15	Polarization-Dependent Light Emission and Charge Creation in MoS Monolayers on Plasmonic Au Nanogratings. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 44088-44093	9.5	2	
14	Strong Light Confinement in Metal-Coated Si Nanopillars: Interplay of Plasmonic Effects and Geometric Resonance. <i>Nanoscale Research Letters</i> , 2017 , 12, 151	5	1	
13	Analysis of temperature-dependent current transport mechanism in Cu/n-type Ge Schottky junction. <i>Vacuum</i> , 2015 , 121, 125-128	3.7	1	

12	Characterization of Pt/a-plane GaN Schottky contacts using conductive atomic force microscopy. Journal of Nanoscience and Nanotechnology, 2011 , 11, 1413-6	1.3	1
11	Interfacial spin interactions of ferromagnetic and antiferromagnetic manganite bilayers. <i>Solid State Communications</i> , 2006 , 137, 545-548	1.6	1
10	Orbital gating driven by giant Stark effect in tunneling phototransistors. Advanced Materials, 2021 , e21	0 <u>6</u> 625	1
9	Carrier transport and working mechanism of transparent photovoltaic cells. <i>Applied Materials Today</i> , 2022 , 26, 101344	6.6	1
8	Internal Fields in Multilayer WS2/MoS2 Heterostructures Epitaxially Grown on Sapphire Substrates. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 2000033	1.6	1
7	Enhanced optical absorption in conformally grown MoS2 layers on SiO2/Si substrates with SiO2 nanopillars with a height of 50 nm. <i>Nanoscale Advances</i> , 2021 , 3, 710-715	5.1	O
6	Electronic structures and optical characteristics of fluorescent pyrazinoquinoxaline assemblies and Au interfaces. <i>Scientific Reports</i> , 2021 , 11, 16978	4.9	O
5	Ten-Micrometer-Thick Si Wafers with Ag Nanoclusters: Substrate Effects on Plasmon-Enhanced Optical Absorption. <i>Plasmonics</i> , 2017 , 12, 405-410	2.4	
4	Indirect probing of defects in unipolar resistive switching NiOxthin films by Ni K-edge resonant inelastic X-ray scattering. <i>Applied Physics Express</i> , 2015 , 8, 021101	2.4	
3	Barrier inhomogeneity in Ag Schottky contacts to bulk ZnO grown by different methods. <i>Journal of the Korean Physical Society</i> , 2012 , 60, 509-513	0.6	
2	Multi-level storage in a nano-floating gate MOS capacitor using a stepped control oxide. <i>Microelectronics Reliability</i> , 2013 , 53, 528-532	1.2	
1	Poster: Memristive Systems523-587		