Edward Korot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5118130/publications.pdf

Version: 2024-02-01

758635 752256 23 870 12 20 h-index citations g-index papers 25 25 25 809 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Re-evaluating diabetic papillopathy using optical coherence tomography and inner retinal sublayer analysis. Eye, 2022, 36, 1476-1485.	1.1	5
2	Evaluating an automated machine learning model that predicts visual acuity outcomes in patients with neovascular age-related macular degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, , 1.	1.0	7
3	Automated Deep Learning for Medical Imaging. , 2022, , 473-485.		O
4	Enablers and Barriers to Deployment of Smartphone-Based Home Vision Monitoring in Clinical Practice Settings. JAMA Ophthalmology, 2022, 140, 153.	1.4	17
5	Multimodal imaging reveals retinoschisis masquerading as retinal detachment in patients with choroideremia. American Journal of Ophthalmology Case Reports, 2022, 26, 101543.	0.4	2
6	New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology. British Journal of Ophthalmology, 2022, 106, 889-892.	2.1	46
7	A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. The Lancet Digital Health, 2021, 3, e51-e66.	5.9	153
8	Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology, 2021, 128, 693-705.	2.5	64
9	Automated Deep Learning for Medical Imaging. , 2021, , 1-13.		O
10	Purpose-built, head-mounted 3D display for ophthalmic microsurgery: surgical skill performance and evaluation: a pilot study. BMJ Innovations, 2021, 7, 463-469.	1.0	0
11	Code-free deep learning for multi-modality medical image classification. Nature Machine Intelligence, 2021, 3, 288-298.	8.3	90
12	Predicting sex from retinal fundus photographs using automated deep learning. Scientific Reports, 2021, 11, 10286.	1.6	65
13	Clinician-driven artificial intelligence in ophthalmology: resources enabling democratization. Current Opinion in Ophthalmology, 2021, 32, 445-451.	1.3	7
14	Automated deep learning in ophthalmology: Al that can build Al. Current Opinion in Ophthalmology, 2021, 32, 406-412.	1.3	21
15	The retina revolution: signaling pathway therapies, genetic therapies, mitochondrial therapies, artificial intelligence. Current Opinion in Ophthalmology, 2020, 31, 207-214.	1.3	5
16	Will AI Replace Ophthalmologists?. Translational Vision Science and Technology, 2020, 9, 2.	1,1	21
17	Insights into Systemic Disease through Retinal Imaging-Based Oculomics. Translational Vision Science and Technology, 2020, 9, 6.	1.1	103
18	Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. The Lancet Digital Health, 2019, 1, e232-e242.	5.9	183

EDWARD KOROT

#	Article	IF	CITATION
19	STEM CELL THERAPIES, GENE-BASED THERAPIES, OPTOGENETICS, AND RETINAL PROSTHETICS:. Retina, 2019, 39, 820-835.	1.0	22
20	A renaissance of teleophthalmology through artificial intelligence. Eye, 2019, 33, 861-863.	1.1	25
21	SURGICAL MANAGEMENT OF TRACTIONAL RETINOSCHISIS ASSOCIATED WITH VITREOUS HEMORRHAGE IN RETINOPATHY OF PREMATURITY. Retinal Cases and Brief Reports, 2019, 13, 72-74.	0.3	2
22	Use of the Avegant Glyph Head-Mounted Virtual Retinal Projection Display to Perform Vitreoretinal Surgery. Journal of Vitreoretinal Diseases, 2018, 2, 22-25.	0.2	5
23	Algorithm for the Measure of Vitreous Hyperreflective Foci in Optical Coherence Tomographic Scans of Patients With Diabetic Macular Edema. JAMA Ophthalmology, 2016, 134, 15.	1.4	26