
## Nadine Essayem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5118050/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Synthesis and Applications of Alkyl Levulinates. ACS Sustainable Chemistry and Engineering, 2014, 2, 1338-1352.                                                                                                                           | 3.2  | 360       |
| 2  | Cellulose hydrothermal conversion promoted by heterogeneous BrÃ,nsted and Lewis acids:<br>Remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis B: Environmental,<br>2011, 105, 171-181.                   | 10.8 | 229       |
| 3  | Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion. Green Chemistry, 2013, 15, 2240.                                   | 4.6  | 220       |
| 4  | Selective Aerobic Oxidation of 5â€HMF into 2,5â€Furandicarboxylic Acid with Pt Catalysts Supported on<br>TiO <sub>2</sub> ―and ZrO <sub>2</sub> â€Based Supports. ChemSusChem, 2015, 8, 1206-1217.                                        | 3.6  | 190       |
| 5  | Acidic and catalytic properties of CsxH3â^'xPW12O40 heteropolyacid compounds. Catalysis Letters, 1995, 34, 223-235.                                                                                                                       | 1.4  | 140       |
| 6  | Influence of the coordination on the catalytic properties of supported W catalysts. Journal of Catalysis, 2004, 226, 25-31.                                                                                                               | 3.1  | 107       |
| 7  | Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution–conversion: influence of the unreacted cellulose. Green Chemistry, 2009, 11, 2052.                                                                              | 4.6  | 106       |
| 8  | 5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in<br>Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent<br>System. Challenges, 2012, 3, 212-232. | 0.9  | 105       |
| 9  | Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A: General, 2011, 402, 1-10.                                                                         | 2.2  | 82        |
| 10 | Cellulose Reactivity in Supercritical Methanol in the Presence of Solid Acid Catalysts: Direct<br>Synthesis of Methyl-levulinate. Industrial & Engineering Chemistry Research, 2011, 50, 799-805.                                         | 1.8  | 77        |
| 11 | Reconstructed La-, Y-, Ce-modified MgAl-hydrotalcite as a solid base catalyst for aldol condensation:<br>Investigation of water tolerance. Journal of Catalysis, 2014, 318, 108-118.                                                      | 3.1  | 67        |
| 12 | FTIR as a simple tool to quantify unconverted lignin from chars in biomass liquefaction process:<br>Application to SC ethanol liquefaction of pine wood. Fuel Processing Technology, 2015, 134, 378-386.                                  | 3.7  | 67        |
| 13 | Glucose–fructose isomerisation promoted by basic hybrid catalysts. Catalysis Today, 2012, 195, 114-119.                                                                                                                                   | 2.2  | 65        |
| 14 | High yield production of HMF from carbohydrates over silica–alumina composite catalysts. Catalysis<br>Science and Technology, 2016, 6, 7586-7596.                                                                                         | 2.1  | 56        |
| 15 | Characterization of Model Three-Way Catalysts. Journal of Catalysis, 1997, 166, 229-235.                                                                                                                                                  | 3.1  | 51        |
| 16 | Activation of Small Alkanes by Heteropolyacids, a H/D Exchange Study: The Key Role of Hydration<br>Water. Journal of Catalysis, 1999, 183, 292-299.                                                                                       | 3.1  | 50        |
| 17 | A new green approach for the reduction of graphene oxide nanosheets using caffeine. Bulletin of<br>Materials Science, 2015, 38, 667-671.                                                                                                  | 0.8  | 46        |
| 18 | Effect of the addition of Sn to zirconia on the acidic properties of the sulfated mixed oxide. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 347-353.                                                                  | 1.7  | 42        |

NADINE ESSAYEM

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ammonia adsorption–desorption over the strong solid acid catalyst H3PW12O40 and its Cs+ and NH4+<br>salts Comparison with sulfated zirconia. Journal of the Chemical Society, Faraday Transactions, 1997,<br>93, 3243-3248.                            | 1.7 | 41        |
| 20 | Synthesis and characterization of acidic ordered mesoporous organosilica SBA-15: Application to the hydrolysis of cellobiose and insight into the stability of the acidic functions. Journal of Catalysis, 2013, 305, 204-216.                         | 3.1 | 39        |
| 21 | Esterification of aqueous lactic acid solutions with ethanol using carbon solid acid catalysts:<br>Amberlyst 15, sulfonated pyrolyzed wood and graphene oxide. Applied Catalysis A: General, 2018, 552,<br>184-191.                                    | 2.2 | 37        |
| 22 | Title is missing!. Catalysis Letters, 1998, 56, 35-41.                                                                                                                                                                                                 | 1.4 | 36        |
| 23 | On the understanding of the remarkable activity of template-containing mesoporous molecular sieves<br>in the transesterification of rapeseed oil with ethanol. Journal of Catalysis, 2010, 276, 190-196.                                               | 3.1 | 30        |
| 24 | Cellulose Conversion with Tungstatedâ€Aluminaâ€Based Catalysts: Influence of the Presence of Platinum<br>and Mechanistic Studies. ChemSusChem, 2013, 6, 500-507.                                                                                       | 3.6 | 30        |
| 25 | Conversion of cellulose to 2,5-hexanedione using tungstated zirconia in hydrogen atmosphere.<br>Applied Catalysis A: General, 2015, 504, 664-671.                                                                                                      | 2.2 | 29        |
| 26 | Synergy effect between solid acid catalysts and concentrated carboxylic acids solutions for efficient furfural production from xylose. Catalysis Today, 2014, 226, 176-184.                                                                            | 2.2 | 25        |
| 27 | Oxidative dehydrogenation of ethylbenzene to styrene over the CoFe2O4–MCM-41 catalyst:<br>preferential adsorption on the O2â^Fe3+O2â^ sites located at octahedral positions. Catalysis Science<br>and Technology, 2019, 9, 2469-2484.                  | 2.1 | 25        |
| 28 | Zirconia modified by Cs cationic exchange: Physico-chemical and catalytic evidences of basicity enhancement. Journal of Catalysis, 2010, 269, 1-4.                                                                                                     | 3.1 | 21        |
| 29 | Pt-AlOOH-SiO2/graphene hybrid nanomaterial with very high electrocatalytic performance for methanol oxidation. Journal of Power Sources, 2015, 276, 340-346.                                                                                           | 4.0 | 21        |
| 30 | Comparative study of transformation of linear alkanes over modified mordenites and sulphated zirconia catalysts: Influence of the zeolite acidity on the performance of n-butane isomerization.<br>Journal of Molecular Catalysis A, 2008, 293, 31-38. | 4.8 | 20        |
| 31 | Influence of butanol isomers on the reactivity of cellulose towards the synthesis of butyl<br>levulinates catalyzed by liquid and solid acid catalysts. New Journal of Chemistry, 2016, 40, 3747-3754.                                                 | 1.4 | 19        |
| 32 | Direct Solid Lewis Acid Catalyzed Wood Liquefaction into Lactic Acid: Kinetic Evidences that Wood<br>Pretreatment Might Not be a Prerequisite. ChemCatChem, 2017, 9, 2377-2382.                                                                        | 1.8 | 17        |
| 33 | Clean Adipic Acid Synthesis from Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Using<br>(NH4)xAyPMo12O40 (A: Sb, Sn, Bi) Mixed Heteropolysalts and Hydrogen Peroxide in Free Solvent.<br>Catalysis Letters, 2018, 148, 612-620.             | 1.4 | 17        |
| 34 | Comparison of hydrothermal and photocatalytic conversion of glucose with commercial TiO2:<br>Superficial properties-activities relationships. Catalysis Today, 2021, 367, 268-277.                                                                     | 2.2 | 16        |
| 35 | Non-Catalyzed and Pt/γ-Al2O3 Catalyzed Hydrothermal Cellulose Dissolution-Conversion: Influence of the Reaction Parameters. Topics in Catalysis, 2010, 53, 1254-1257.                                                                                  | 1.3 | 15        |
| 36 | Deuterium Solid-State NMR Study of the Dynamic Behavior of Deuterons and Water Molecules in Solid<br>D3PW12O40. Journal of Physical Chemistry B, 2003, 107, 12438-12443.                                                                               | 1.2 | 14        |

NADINE ESSAYEM

| #  | Article                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Continuous iC4/C4=Alkylation under iC4Supercritical Conditions over K2.5H0.5PW12O40and Hâ^Beta<br>Solid Acids. Industrial & Engineering Chemistry Research, 2004, 43, 6355-6362.                                                                                                                       | 1.8  | 14        |
| 38 | Studies on MeAPSO-5: An investigation of physicochemical and acidic properties. Catalysis Today, 2008, 133-135, 56-62.                                                                                                                                                                                 | 2.2  | 12        |
| 39 | Structural, acidic and catalytic features of transition metal-containing molecular sieves in the transformation of C4 hydrocarbon. Applied Catalysis A: General, 2010, 382, 10-20.                                                                                                                     | 2.2  | 12        |
| 40 | Synthesis of Cu–M <sub>x</sub> O <sub>y</sub> /Al <sub>2</sub> O <sub>3</sub> (M = Fe, Zn, W or Sb) catalysts for the conversion of glycerol to acetol: effect of texture and acidity of the supports. RSC Advances, 2015, 5, 93394-93402.                                                             | 1.7  | 12        |
| 41 | Esterification of Lactic Acid by Catalytic Extractive Reaction: An Efficient Way to Produce a<br>Biosolvent Composition. Catalysis Letters, 2013, 143, 950-956.                                                                                                                                        | 1.4  | 11        |
| 42 | New Insights into the Reactivity of Biomass with Butenes for the Synthesis of Butyl Levulinates.<br>ChemSusChem, 2017, 10, 2612-2617.                                                                                                                                                                  | 3.6  | 10        |
| 43 | Noncatalyzed Liquefaction of Celluloses in Hydrothermal Conditions: Influence of Reactant<br>Physicochemical Characteristics and Modeling Studies. Industrial & Engineering Chemistry<br>Research, 2017, 56, 126-134.                                                                                  | 1.8  | 9         |
| 44 | Acid Properties of GO and Reduced GO as Determined by Microcalorimetry, FTIR, and Kinetics of Cellulose Hydrolysis-Hydrogenolysis. Catalysts, 2020, 10, 1393.                                                                                                                                          | 1.6  | 9         |
| 45 | Hydrothermal process assisted by photocatalysis: Towards a novel hybrid mechanism driven glucose<br>valorization to levulinic acid, ethylene and hydrogen. Applied Catalysis B: Environmental, 2022, 305,<br>121051.                                                                                   | 10.8 | 9         |
| 46 | Silica supported sulfated zirconia prepared by a sol-gel process: Effect of solvent evacuation<br>procedure on the structural, textural and catalytic properties. Journal of Sol-Gel Science and<br>Technology, 2006, 38, 185-190.                                                                     | 1.1  | 8         |
| 47 | 1H NMR evidence for the bi-pyridinium nature of the pyridine salt of H3PW12O40. Catalysis<br>Communications, 2005, 6, 539-541.                                                                                                                                                                         | 1.6  | 7         |
| 48 | Acid and superacid solids for the transformation of n-butane. Reaction Kinetics and Catalysis Letters, 2006, 89, 123-129.                                                                                                                                                                              | 0.6  | 7         |
| 49 | Correlation between the basicity of Cu–MxOy–Al2O3 (MÂ=ÂBa, Mg, K or La) oxide and the catalytic performance in the glycerol conversion from adsorption microcalorimetry characterization. Journal of Thermal Analysis and Calorimetry, 2017, 129, 65-74.                                               | 2.0  | 7         |
| 50 | Influence of the support on the catalytic properties of Keggin type heteropolyacids supported on<br>niobia according to two different methodologies: evaluation of isopropanol dehydration and<br>Friedel–Crafts alkylation reaction. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 317-334. | 0.8  | 7         |
| 51 | Kinetic of ZrW catalyzed cellulose hydrothermal conversion: Deeper understanding of reaction pathway via analytic tools improvement. Molecular Catalysis, 2018, 458, 171-179.                                                                                                                          | 1.0  | 7         |
| 52 | ZrW catalyzed cellulose conversion in hydrothermal conditions: Influence of the calcination temperature and insights on the nature of the active phase. Molecular Catalysis, 2019, 476, 110518.                                                                                                        | 1.0  | 7         |
| 53 | Comparison of the Acidity of Heteropolyacids Encapsulated in or Impregnated on SBA-15. Oil and Gas<br>Science and Technology, 2016, 71, 25.                                                                                                                                                            | 1.4  | 6         |
| 54 | Controlled pinewood fractionation with supercritical ethanol: A prerequisite toward pinewood conversion into chemicals and biofuels. Comptes Rendus Chimie, 2018, 21, 555-562.                                                                                                                         | 0.2  | 6         |

NADINE ESSAYEM

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of hydration on the surface basicity and catalytic activity of Mg-rare earth mixed oxides for aldol condensation. Journal of Rare Earths, 2018, 36, 359-366.                                                                                    | 2.5 | 5         |
| 56 | Thermal control of the defunctionalization of supported Au25(glutathione)18 catalysts for benzyl alcohol oxidation. Beilstein Journal of Nanotechnology, 2019, 10, 228-237.                                                                            | 1.5 | 5         |
| 57 | Preferential adsorption of CO2 on cobalt ferrite sites and its role in oxidative dehydrogenation of ethylbenzene. Brazilian Journal of Chemical Engineering, 2021, 38, 495-510.                                                                        | 0.7 | 5         |
| 58 | Gas-Phase Conversion of Glycerol to Acetol: Influence of Support Acidity on the Catalytic Stability and Copper Surface Properties on the Activity. Journal of the Brazilian Chemical Society, 2016, , .                                                | 0.6 | 4         |
| 59 | Improving conversion of d-Glucose into short-chain alkanes over Ru/MCM-48 based catalysts.<br>Microporous and Mesoporous Materials, 2019, 286, 25-35.                                                                                                  | 2.2 | 4         |
| 60 | NON-CRYSTALLINE COPPER OXIDE HIGHLY DISPERSED ON MESOPOROUS ALUMINA: SYNTHESIS,<br>CHARACTERIZATION AND CATALYTIC ACTIVITY IN GLYCEROL CONVERSION TO ACETOL. Quimica Nova, 2016, , .                                                                   | 0.3 | 2         |
| 61 | Mesoporous Zirconium Oxide Prepared by Anchoring W, Mo, Nb, Ta Using Peroxo Precursors:<br>Influence of the Oxoanions on the Pores Size and the Hydrothermal Catalysts Stability for Cellulose<br>Conversion. Catalysis Letters, 2023, 153, 1205-1214. | 1.4 | 2         |
| 62 | Reutilization of Glycerol Derived from Biodiesel Production Using HPW-Based Catalysts Supported on<br>Niobium for Obtention of Additives. Revista Virtual De Quimica, 2014, 6, .                                                                       | 0.1 | 1         |
| 63 | A Landscape of Lignocellulosic Biopolymer Transformations into Valuable Molecules by<br>Heterogeneous Catalysis in C'Durable Team at IRCELYON. Molecules, 2021, 26, 6796.                                                                              | 1.7 | 1         |
| 64 | Evolution des propriétés texturales, structurales et catalytiques des oxydes mixtes de zircone<br>sulfatée-silice avec le rapport molaire Zr/Si : influence de la méthode de synthèse. Annales De Chimie:<br>Science Des Materiaux, 2008, 33, 189-201. | 0.2 | 0         |
| 65 | Glycerol Etherification with Light Alcohols Promoted by Supported H3PW12O40. , 2013, , 141-152.                                                                                                                                                        |     | 0         |
| 66 | SYNTHESIS AND THEORETICAL STUDY OF HPW CATALYSTS SUPPORTED ON NIOBIA CALCINATED AT 500 AND 600 °C. Quimica Nova, 2019, , .                                                                                                                             | 0.3 | 0         |