Sue D Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5117997/publications.pdf Version: 2024-02-01

SHE D XIANC

#	Article	IF	CITATIONS
1	Pathogen recognition and development of particulate vaccines: Does size matter?. Methods, 2006, 40, 1-9.	1.9	509
2	Type 1 and 2 Immunity Following Vaccination Is Influenced by Nanoparticle Size:Â Formulation of a Model Vaccine for Respiratory Syncytial Virus. Molecular Pharmaceutics, 2007, 4, 73-84.	2.3	258
3	Vaccines that facilitate antigen entry into dendritic cells. Immunology and Cell Biology, 2004, 82, 506-516.	1.0	181
4	Differential Uptake of Nanoparticles and Microparticles by Pulmonary APC Subsets Induces Discrete Immunological Imprints. Journal of Immunology, 2013, 191, 5278-5290.	0.4	83
5	Methods for nano-particle based vaccine formulation and evaluation of their immunogenicity. Methods, 2006, 40, 20-29.	1.9	81
6	Immunotherapeutic Interleukin-6 or Interleukin-6 Receptor Blockade in Cancer: Challenges and Opportunities. Current Medicinal Chemistry, 2018, 25, 4785-4806.	1.2	80
7	Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 205-218.	3.3	67
8	Myeloid Derived Suppressor Cells and Their Role in Diseases. Current Medicinal Chemistry, 2013, 20, 1437-1444.	1.2	65
9	Promising particle-based vaccines in cancer therapy. Expert Review of Vaccines, 2008, 7, 1103-1119.	2.0	61
10	Inert 50-nm Polystyrene Nanoparticles That Modify Pulmonary Dendritic Cell Function and Inhibit Allergic Airway Inflammation. Journal of Immunology, 2012, 188, 1431-1441.	0.4	51
11	Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads. Vaccine, 2008, 26, 2706-2713.	1.7	43
12	Methods of effective conjugation of antigens to nanoparticles as non-inflammatory vaccine carriers. Methods, 2013, 60, 232-241.	1.9	42
13	The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metabolism Reviews, 2014, 46, 176-190.	1.5	41
14	Design of magnetic polyplexes taken up efficiently by dendritic cell for enhanced DNA vaccine delivery. Gene Therapy, 2014, 21, 212-218.	2.3	40
15	Montanide, Poly I:C and nanoparticle based vaccines promote differential suppressor and effector cell expansion: a study of induction of CD8 T cells to a minimal Plasmodium berghei epitope. Frontiers in Microbiology, 2015, 6, 29.	1.5	33
16	N,N′-Carbonyldiimidazole-mediated functionalization of superparamagnetic nanoparticles as vaccine carrier. Colloids and Surfaces B: Biointerfaces, 2011, 83, 83-90.	2.5	31
17	Understanding CD8 ⁺ Tâ€cell responses toward the native and alternate HLAâ€Aâ^—02:01â€restricte WT1 epitope. Clinical and Translational Immunology, 2017, 6, e134.	rd 1.7	24
18	Design of Peptide-Based Nanovaccines Targeting Leading Antigens From Gynecological Cancers to Induce HLA-A2.1 Restricted CD8+ T Cell Responses. Frontiers in Immunology, 2018, 9, 2968.	2.2	23

SUE D XIANG

#	Article	IF	CITATIONS
19	Tracking membrane and secretory immunoglobulin α heavy chain mRNA variation during B ell differentiation by realâ€time quantitative polymerase chain reaction. Immunology and Cell Biology, 2001, 79, 472-481.	1.0	22
20	The Use of Synthetic Carriers in Malaria Vaccine Design. Vaccines, 2015, 3, 894-929.	2.1	22
21	Investigation of a novel approach to scoring Giemsa-stained malaria-infected thin blood films. Malaria Journal, 2008, 7, 62.	0.8	21
22	A Synthetic Nanoparticle Based Vaccine Approach Targeting MSP4/5 Is Immunogenic and Induces Moderate Protection Against Murine Blood-Stage Malaria. Frontiers in Immunology, 2019, 10, 331.	2.2	21
23	The signalling imprints of nanoparticle uptake by bone marrow derived dendritic cells. Methods, 2013, 60, 275-283.	1.9	20
24	On the efficacy of malaria DNA vaccination with magnetic gene vectors. Journal of Controlled Release, 2013, 168, 10-17.	4.8	18
25	Immunological effects among workers who handle engineered nanoparticles. Occupational and Environmental Medicine, 2017, 74, 868-876.	1.3	18
26	A simple method allowing DIC imaging in conjunction with confocal microscopy. Journal of Microscopy, 2005, 217, 265-274.	0.8	17
27	Magnetic Nanovectors for the Development of DNA Blood-Stage Malaria Vaccines. Nanomaterials, 2017, 7, 30.	1.9	17
28	Methods to measure T-cell responses. Expert Review of Vaccines, 2010, 9, 595-600.	2.0	16
29	Engineered Hydrogen-Bonded Glycopolymer Capsules and Their Interactions with Antigen Presenting Cells. ACS Applied Materials & Interfaces, 2017, 9, 6444-6452.	4.0	15
30	A Model to Study the Impact of Polymorphism Driven Liver-Stage Immune Evasion by Malaria Parasites, to Help Design Effective Cross-Reactive Vaccines. Frontiers in Microbiology, 2016, 7, 303.	1.5	13
31	Substantially Modified Ratios of Effector to Regulatory T Cells During Chemotherapy in Ovarian Cancer Patients Return to Pre-Treatment Levels at Completion: Implications for Immunotherapy. Cancers, 2012, 4, 581-600.	1.7	12
32	Nanoparticles modify dendritic cell homeostasis and induce non-specific effects on immunity to malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 70-76.	0.7	11
33	Sperm Protein 17 Expression by Murine Epithelial Ovarian Cancer Cells and Its Impact on Tumor Progression. Cancers, 2018, 10, 276.	1.7	11
34	Physiologic Determinants of Endothelin Concentrations in Human Saliva. Clinical Chemistry, 2003, 49, 2012-2019.	1.5	10
35	A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes. Vaccines, 2015, 3, 875-893.	2.1	9
36	Mapping T and B cell epitopes in sperm protein 17 to support the development of an ovarian cancer vaccine. Vaccine, 2015, 33, 5950-5959.	1.7	9

SUE D XIANG

#	Article	IF	CITATIONS
37	Nanoparticles, Immunomodulation and Vaccine Delivery. Frontiers in Nanobiomedical Research, 2013, , 449-475.	0.1	7
38	EDITORIAL: Nanotechnology and vaccine development: Methods to study and manipulate the interaction of nanoparticles with the immune system. Methods, 2013, 60, 225.	1.9	7
39	Pullulan-Coated Iron Oxide Nanoparticles for Blood-Stage Malaria Vaccine Delivery. Vaccines, 2020, 8, 651.	2.1	7
40	Exacerbation of Ventilation-Induced Lung Injury and Inflammation in Preterm Lambs by High-Dose Nanoparticles. Scientific Reports, 2017, 7, 14704.	1.6	5
41	Inflammatory/Noninflammatory Adjuvants and Nanotechnology—The Secret to Vaccine Design. , 2017, , 99-125.		2
42	Functional Recognition by CD8+ T Cells of Epitopes with Amino Acid Variations Outside Known MHC Anchor or T Cell Receptor Recognition Residues. International Journal of Molecular Sciences, 2020, 21, 4700.	1.8	2
43	Low-Temperature Synthesis of Hollow β-Tricalcium Phosphate Particles for Bone Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2022, , .	2.6	2
44	Design of nanoparticle structures for cancer immunotherapy. , 2017, , 307-328.		1
45	Nanoparticles, Immunomodulation and Vaccine Delivery. Frontiers in Nanobiomedical Research, 2016, , 101-127.	0.1	0
46	Design of Dendritic Cell-targeting Magnetic Polyplexes for Enhanced Malaria DNA Vaccine Delivery. , 2012, , .		0