Jacob W Myerson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5117988/publications.pdf Version: 2024-02-01

LACOR W/ MVEDSON

#	Article	IF	CITATIONS
1	Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nature Nanotechnology, 2022, 17, 86-97.	31.5	57
2	Combating Complement's Deleterious Effects on Nanomedicine by Conjugating Complement Regulatory Proteins to Nanoparticles. Advanced Materials, 2022, 34, e2107070.	21.0	20
3	Dual Affinity to RBCs and Target Cells (DART) Enhances Both Organ- and Cell Type-Targeting of Intravascular Nanocarriers. ACS Nano, 2022, 16, 4666-4683.	14.6	24
4	Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). Journal of Controlled Release, 2022, 344, 50-61.	9.9	49
5	Targeted In Vivo Loading of Red Blood Cells Markedly Prolongs Nanocarrier Circulation. Bioconjugate Chemistry, 2022, 33, 1286-1294.	3.6	13
6	Copper Oxide Nanoparticle-Induced Acute Inflammatory Response and Injury in Murine Lung Is Ameliorated by Synthetic Secoisolariciresinol Diglucoside (LGM2605). International Journal of Molecular Sciences, 2021, 22, 9477.	4.1	9
7	Erythrocytes as carriers of immunoglobulin-based therapeutics. Acta Biomaterialia, 2020, 101, 422-435.	8.3	25
8	Targeting drug delivery in the vascular system: Focus on endothelium. Advanced Drug Delivery Reviews, 2020, 157, 96-117.	13.7	61
9	Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood–brain barrier. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3405-3414.	7.1	97
10	Cross-linker-Modulated Nanogel Flexibility Correlates with Tunable Targeting to a Sterically Impeded Endothelial Marker. ACS Nano, 2019, 13, 11409-11421.	14.6	24
11	Stiffness can mediate balance between hydrodynamic forces and avidity to impact the targeting of flexible polymeric nanoparticles in flow. Nanoscale, 2019, 11, 6916-6928.	5.6	15
12	Combining vascular targeting and the local first pass provides 100-fold higher uptake of ICAM-1-targeted vs untargeted nanocarriers in the inflamed brain. Journal of Controlled Release, 2019, 301, 54-61.	9.9	36
13	Nanoparticle Properties Modulate Their Attachment and Effect on Carrier Red Blood Cells. Scientific Reports, 2018, 8, 1615.	3.3	83
14	Flexible Nanoparticles Reach Sterically Obscured Endothelial Targets Inaccessible to Rigid Nanoparticles. Advanced Materials, 2018, 30, e1802373.	21.0	73
15	Unintended effects of drug carriers: Big issues of small particles. Advanced Drug Delivery Reviews, 2018, 130, 90-112.	13.7	51
16	Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nature Communications, 2018, 9, 2684.	12.8	247
17	Mechanisms that determine nanocarrier targeting to healthy versus inflamed lung regions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1495-1506.	3.3	34
18	Fluorescence Microscopy Imaging Calibration for Quantifying Nanocarrier Binding to Cells During Shear Flow Exposure. Journal of Biomedical Nanotechnology, 2017, 13, 737-745.	1.1	6

#	Article	IF	CITATIONS
19	Inhibition of Thrombin With PPACK-Nanoparticles Restores Disrupted Endothelial Barriers and Attenuates Thrombotic Risk in Experimental Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 446-455.	2.4	38
20	Non-affinity factors modulating vascular targeting of nano- and microcarriers. Advanced Drug Delivery Reviews, 2016, 99, 97-112.	13.7	65
21	Systems approaches to design of targeted therapeutic delivery. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 253-265.	6.6	7
22	Nanoparticle-Induced Augmentation of Neutrophils' Phagocytosis of Bacteria. Frontiers in Pharmacology, 0, 13, .	3.5	0