
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5117851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hanle effect in Ti Laser-Induced Plasma Lasers. Optics Communications, 2022, 517, 128292.	2.1	1
2	Polarization effects in laser-induced plasma lasers based on elements from the 13th group. Journal of Applied Physics, 2021, 129, .	2.5	6
3	Atomic and molecular emission of beryllium by LIBS. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 182, 106233.	2.9	7
4	Effect of crater volume on laser-induced plasma lasers and Laser-Induced Breakdown Spectroscopy intensity. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 183, 106246.	2.9	7
5	Review on recent advances in analytical applications of molecular emission and modelling. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 173, 105989.	2.9	22
6	Halogen detection with molecular laser induced fluorescence. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 166, 105813.	2.9	12
7	Laser-induced breakdown spectroscopy of BaF2-Tm3+. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 164, 105767.	2.9	2
8	Polarization of the laser induced plasma lasers. Optics Communications, 2019, 447, 51-54.	2.1	8
9	Laser-induced breakdown spectroscopy of Br and I molecules with alkali-earth elements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 157, 47-52.	2.9	15
10	Third harmonic generation in double-pulse laser induced air plasma. Optics Communications, 2019, 443, 63-68.	2.1	2
11	Cascade generation in Al laser induced plasma. Optics Communications, 2018, 415, 127-129.	2.1	8
12	Laser-induced time resolved luminescence of natural sylvite KCl. Journal of Luminescence, 2018, 195, 430-434.	3.1	0
13	Stimulated emission in aluminum laser-induced plasma: kinetic model of population inversion. Applied Optics, 2017, 56, 695.	2.1	12
14	Stimulated emission in aluminum laser-induced plasma: an experimental study. Applied Optics, 2017, 56, 3699.	2.1	11
15	Stimulated emission and lasing in laser-induced plasma plume. Optics Communications, 2016, 378, 41-48.	2.1	19
16	Combining Laser-Induced Breakdown Spectroscopy with Molecular Laser-Induced Fluorescence. Applied Spectroscopy, 2016, 70, 585-592.	2.2	27
17	Boron- and iron-bearing molecules in laser-induced plasma. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 110, 56-62.	2.9	15
18	Lasing effects in a laser-induced plasma plume. Optics Communications, 2015, 354, 330-332.	2.1	16

#	Article	IF	CITATIONS
19	Industrial Online Raw Materials Analyzer Based on Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 2014, 68, 1004-1015.	2.2	39
20	Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 98, 39-47.	2.9	87
21	Laser-induced breakdown spectroscopy of Zr in short ultraviolet wavelength range. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 85, 93-99.	2.9	12
22	Fraunhofer-type absorption line splitting and polarization in confocal double-pulse laser induced plasma. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 88, 127-135.	2.9	10
23	Laser-induced time resolved luminescence of natural grossular Ca3Al2(SiO4)3. Journal of Luminescence, 2013, 137, 43-53.	3.1	10
24	Laser-induced time-resolved luminescence of natural margarosanite Pb(Ca, Mn)2Si3O9, swedenborgite NaBe4SbO7 and walstromite BaCa2Si3O9. European Journal of Mineralogy, 2013, 25, 71-77.	1.3	11
25	Laser-induced time-resolved luminescence of natural sillimanite Al2SiO5 and synthetic Al2SiO5 activated by chromium. Journal of Luminescence, 2012, 132, 2855-2862.	3.1	13
26	Configurational coordinate diagram of Ni2+ doped silver halide crystals, as determined by optical and luminescence measurements. Journal of Luminescence, 2012, 132, 2072-2076.	3.1	3
27	Plasma induced luminescence (PIL). Optical Materials, 2011, 34, 368-375.	3.6	16
28	Comparison of single and double-pulse excitation during the earliest stage of laser induced plasma. Analytical and Bioanalytical Chemistry, 2011, 400, 3207-3216.	3.7	16
29	Doubly ionized ion emission in laser-induced breakdown spectroscopy in air. Analytical and Bioanalytical Chemistry, 2011, 400, 3229-3237.	3.7	16
30	Laser-induced time-resolved luminescence of orange kyanite Al2SiO5. Optical Materials, 2011, 33, 1476-1480.	3.6	15
31	Optical and luminescence properties of Co:AgCl0.2Br0.8 crystals and their potential applications as gain media for middle-infrared lasers. Applied Physics Letters, 2011, 99, 201111.	3.3	9
32	Laser-induced time-resolved luminescence of tugtupite, sodalite and hackmanite. Physics and Chemistry of Minerals, 2009, 36, 127-141.	0.8	28
33	Narrow gated Raman and luminescence of explosives. Journal of Luminescence, 2009, 129, 979-983.	3.1	27
34	Laser-induced breakdown spectroscopy for on-line sulfur analyses of minerals in ambient conditions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 1098-1104.	2.9	67
35	Gated Raman spectroscopy: potential for fundamental and applied mineralogy. European Journal of Mineralogy, 2009, 21, 33-42.	1.3	13
36	Raman spectroscopy of rare earth doped silver halide crystals. Applied Physics Letters, 2009, 94, 231907.	3.3	11

#	Article	IF	CITATIONS
37	Middle infrared luminescence of Tb3+ in silver halide crystals and fibers. Journal of Luminescence, 2008, 128, 1323-1330.	3.1	8
38	UV gated Raman spectroscopy for standoff detection of explosives. Optical Materials, 2008, 30, 1739-1746.	3.6	149
39	Absolute Raman cross-sections of some explosives: Trend to UV. Optical Materials, 2008, 30, 1747-1754.	3.6	68
40	A Scanning Near-Field Infrared Microscope Based on AgClBr Fiber Probes. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 19-28.	2.9	2
41	The nature of unusual luminescence in natural calcite CaCO3. American Mineralogist, 2008, 93, 158-167.	1.9	26
42	A scanning near-field middle-infrared microscope for the study of objects submerged in water. Applied Physics Letters, 2008, 92, 104104.	3.3	8
43	Middle-infrared luminescence of Nd ions in silver halide crystals. Journal of Luminescence, 2007, 126, 541-546.	3.1	10
44	Optical properties of Pr ions in silver halide crystals in the middle infrared spectral range. Optical Materials, 2006, 28, 147-151.	3.6	7
45	Development of tapered silver-halide fiber tips for a scanning near-field microscope operating in the middle infrared. Review of Scientific Instruments, 2006, 77, 126103.	1.3	10
46	The nature of red luminescence of natural benitoite BaTiSi3O9. Mineralogy and Petrology, 2005, 85, 33-44.	1.1	5
47	Scanning near field infrared radiometry for thermal imaging of infrared emitters with subwavelength resolution. Applied Physics Letters, 2005, 87, 101109.	3.3	14
48	Middle-infrared luminescence of praseodymium ions in silver halide crystals and fibers. Optics Letters, 2005, 30, 1831.	3.3	14
49	Scanning near-field infrared microscopy based on tapered silver–halide probes. Applied Physics Letters, 2004, 84, 637-639.	3.3	27
50	Collection-mode near-field scanning infrared microscope based on silver halide probes. Applied Physics Letters, 2004, 85, 5538-5540.	3.3	6
51	The nature of blue luminescence from natural benitoite BaTiSi3O9. Physics and Chemistry of Minerals, 2004, 31, 365.	0.8	41
52	Laser-induced time-resolved luminescence of natural titanite CaTiOSiO4. Optical Materials, 2003, 24, 231-241.	3.6	14
53	Diffusion of Pr3+ ions in silver halide crystals. Optical Materials, 2001, 16, 243-248.	3.6	3
54	IR Lasers and Application Systems for Myringotomy. Lasers in Medical Science, 2000, 15, 162-168.	2.1	1

#	Article	IF	CITATIONS
55	Ordered bundles of infrared-transmitting AgClBr fibers: optical characterization of individual fibers. Optics Letters, 2000, 25, 1237.	3.3	25
56	Luminescence method for the study of Nd3+ ions diffusion in AgBr crystals. Journal of Applied Physics, 1999, 85, 2114-2118.	2.5	5
57	Rare earth ion diffusion in AgBr crystals. Optical Materials, 1999, 13, 89-95.	3.6	2
58	Absorption spectrum of silver bromide crystals and fibers in the 9–11 μm wavelength range. Journal of Applied Physics, 1997, 81, 1612-1613.	2.5	6
59	Silver-halide fiber tip as a beam homogenizer for infrared hollow waveguides. Optics Letters, 1997, 22, 1308.	3.3	20
60	The luminescence properties of Dy-doped high silicate glass. Journal of Non-Crystalline Solids, 1997, 217, 208-214.	3.1	74
61	The visible and infrared luminescence of activated silver bromide crystals. Optical Materials, 1997, 8, 21-29.	3.6	6
62	Medical applications of infrared transmitting silver halide fibers. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2, 872-879.	2.9	36
63	Luminescence kinetics of iodine-doped silver bromide crystals: concentration and excitation intensity dependences. Journal of Physics Condensed Matter, 1996, 8, 6445-6456.	1.8	2
64	IR luminescence of Ni-doped silver bromide crystals. Journal of Luminescence, 1995, 65, 41-44.	3.1	10
65	Defects and luminescence in pure and i-doped AgBr crystals. Radiation Effects and Defects in Solids, 1995, 135, 301-303.	1.2	0
66	Infrared luminescence of neodymium-doped silver bromide crystals. Optics Letters, 1995, 20, 2417.	3.3	10
67	Luminescence of Bi4Ge3O12 (BGO) crystals under KrF and XeF laser excitation. Journal of Luminescence, 1993, 55, 139-143.	3.1	4
68	Optical properties of mixed silver halide crystals and fibers. Journal of Applied Physics, 1993, 74, 5737-5741.	2.5	42
69	CO2laser power transmission and laser induced breakdown in AgClxBr1â^'xcrystals, polycrystals, and fibers. Applied Physics Letters, 1992, 61, 1624-1625.	3.3	5
70	On the Reasons of the Off entre Position of Excited Ga ⁺ and In ⁺ Ions in Alkali Halides. Physica Status Solidi (B): Basic Research, 1990, 162, K91.	1.5	8
71	Intraband luminescence of CsI crystal. Solid State Communications, 1989, 71, 859-862.	1.9	26
72	In+va+vcâ^' Centres in a KCl-In Crystal. Physica Status Solidi (B): Basic Research, 1976, 73, 427-430.	1.5	0