Inga R Grin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5117186/publications.pdf

Version: 2024-02-01

623734 677142 26 492 14 22 citations h-index g-index papers 27 27 27 678 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Nucleic Acids Research, 2012, 40, 9917-9926.	14.5	77
2	An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation. Nucleic Acids Research, 2016, 44, 3713-3727.	14.5	54
3	Heavy metal ions affect the activity of DNA glycosylases of the Fpg family. Biochemistry (Moscow), 2009, 74, 1253-1259.	1.5	37
4	The role of mammalian NEIL1 protein in the repair of 8â€oxoâ€7,8â€dihydroadenine in DNA. FEBS Letters, 2010, 584, 1553-1557.	2.8	34
5	Eukaryotic endonuclease VIII-Like proteins: New components of the base excision DNA repair system. Biochemistry (Moscow), 2011, 76, 80-93.	1.5	31
6	Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA. Biochimie, 2016, 128-129, 20-33.	2.6	28
7	Deoxyribophosphate lyase activity of mammalian endonuclease VIII-like proteins. FEBS Letters, 2006, 580, 4916-4922.	2.8	26
8	Influence of pyridine-like ligands on the structure, photochemical and biological properties of nitro-nitrosyl ruthenium complexes. New Journal of Chemistry, 2017, 41, 7758-7765.	2.8	23
9	Oxidative damage to epigenetically methylated sites affects DNA stability, dynamics and enzymatic demethylation. Nucleic Acids Research, 2018, 46, 10827-10839.	14.5	22
10	Effect of the multifunctional proteins RPA, YBâ€1, and XPC repair factor on AP site cleavage by DNA glycosylase NEIL1. Journal of Molecular Recognition, 2012, 25, 224-233.	2.1	21
11	Cloning and Characterization of a Wheat Homologue of Apurinic/Apyrimidinic Endonuclease Ape1L. PLoS ONE, 2014, 9, e92963.	2.5	19
12	Photoinduced inhibition of DNA repair enzymes and the possible mechanism of photochemical transformations of the ruthenium nitrosyl complex [RuNO(\hat{l}^2 -Pic) ₂ (NO ₂) ₂ OH]. Metallomics, 2019, 11, 1999-2009.	2.4	19
13	Excision of 8â€oxoguanine from methylated CpG dinucleotides by human 8â€oxoguanine DNA glycosylase. FEBS Letters, 2013, 587, 3129-3134.	2.8	18
14	Conformational Dynamics of Damage Processing by Human DNA Glycosylase NEIL1. Journal of Molecular Biology, 2019, 431, 1098-1112.	4.2	17
15	Reading Targeted DNA Damage in the Active Demethylation Pathway: Role of Accessory Domains of Eukaryotic AP Endonucleases and Thymine-DNA Glycosylases. Journal of Molecular Biology, 2020, 432, 1747-1768.	4.2	12
16	Inactivation of NEIL2 DNA glycosylase by pyridoxal phosphate reveals a loop important for substrate binding. Biochemical and Biophysical Research Communications, 2010, 394, 100-105.	2.1	11
17	A New Class of Uracil–DNA Glycosylase Inhibitors Active against Human and Vaccinia Virus Enzyme. Molecules, 2021, 26, 6668.	3.8	7
18	Displacement of Slow-Turnover DNA Glycosylases by Molecular Traffic on DNA. Genes, 2020, 11, 866.	2.4	6

#	Article	IF	CITATIONS
19	Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases. Cells, 2021, 10, 1591.	4.1	6
20	A Low-Activity Polymorphic Variant of Human NEIL2 DNA Glycosylase. International Journal of Molecular Sciences, 2022, 23, 2212.	4.1	6
21	Functional variants of human APE1 rescue the DNA repair defects of the yeast AP endonuclease/3′-diesterase-deficient strain. DNA Repair, 2014, 22, 53-66.	2.8	5
22	Platinum Polyoxoniobates Form Adducts with DNA. Russian Journal of Bioorganic Chemistry, 2019, 45, 641-646.	1.0	4
23	Highly efficient modification of DNA polymerase \hat{l}^2 under conditions of direct and sensitized activation of photoreactive DNAs. Modification of cell extract proteins. Russian Chemical Bulletin, 2005, 54, 1311-1321.	1.5	3
24	2′,3′-Dideoxyuridine triphosphate conjugated to SiO 2 nanoparticles: Synthesis and evaluation of antiproliferative activity. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1248-1251.	2.2	3
25	Relative Efficiency of Recognition of 5-Methylcytosine and 5-Hydroxymethylcytosine by Methyl-Dependent DNA Endonuclease Glal. Russian Journal of Bioorganic Chemistry, 2019, 45, 625-629.	1.0	2
26	Data set on the synthesis and properties of $2\hat{a} \in (2.3)$ dideoxyuridine triphosphate conjugated to SiO2 nanoparticles. Data in Brief, 2018, 21, 540-547.	1.0	0