Briggs Buchanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5117100/publications.pdf

Version: 2024-02-01

85 2,841 28 49
papers citations h-index g-index

86 86 86 1085
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	North American Clovis Point Form and Performance II: An Experimental Assessment of Point, Haft, and Shaft Durability. Lithic Technology, 2022, 47, 38-51.	0.4	14
2	Knapping quality of local versus exotic Upper Mercer chert (Ohio, USA) during the Holocene. Geoarchaeology - an International Journal, 2022, 37, 486-496.	0.7	6
3	Plains Paleoindian Projectile Point Penetration Potential. Journal of Anthropological Research, 2022, 78, 84-112.	0.1	21
4	Bayesian Modeling of the Clovis and Folsom Radiocarbon Records Indicates a 200-Year Multigenerational Transition. American Antiquity, 2022, 87, 567-580.	0.6	10
5	North American Clovis Point Form and Performance III: An Experimental Assessment of Knife Cutting Efficiency. Lithic Technology, 2022, 47, 203-220.	0.4	13
6	Refining the chronology of North America's copper using traditions: A macroscalar approach via Bayesian modeling. PLoS ONE, 2022, 17, e0266908.	1.1	5
7	Experimental assessment of obsidian versus chert lanceolate projectile point durability and robusticity: Semiâ€static fracture strength and dynamic impact. Archaeometry, 2022, 64, 1307-1324.	0.6	5
8	Scaling Laws of Paleoindian Projectile Point Design. Journal of Archaeological Method and Theory, 2021, 28, 580-602.	1.4	14
9	The Effect of Isometric Scaling on Flaked Stone Projectile Point Impact Durability: An Experimental Assessment. Lithic Technology, 2021, 46, 260-269.	0.4	4
10	Experimental assessment of Neo-Assyrian bronze arrowhead penetration: An initial study comparing bilobate versus trilobate morphologies. Journal of Archaeological Science: Reports, 2021, 35, 102765.	0.2	5
11	Bayesian Revision of the Folsom Age Range Using IntCal20. PaleoAmerica, 2021, 7, 133-144.	0.4	14
12	Was Welling, Ohio (33-Co-2), a Clovis Basecamp or Lithic Workshop? Employing Experimental Models to Interpret Old Collections. American Antiquity, 2021, 86, 183-198.	0.6	9
13	Antelope Springs: A Folsom Site in South Park, Colorado. PaleoAmerica, 2021, 7, 114-132.	0.4	7
14	Current Evidence Supports Welling as an Outcrop-Related Base Camp. American Antiquity, 2021, 86, 867-870.	0.6	4
15	Geometric Morphometric Analyses Support Incorporating the Goshen Point Type into Plainview. American Antiquity, 2020, 85, 171-181.	0.6	7
16	North American Clovis Point Form and Performance: An Experimental Assessment of Penetration Depth. Lithic Technology, 2020, 45, 263-282.	0.4	32
17	Tip cross-sectional geometry predicts the penetration depth of stone-tipped projectiles. Scientific Reports, 2020, 10, 13289.	1.6	39
18	Description, Geometric Morphometrics, and Microwear of Five Clovis Fluted Projectile Points from Lucas and Wood Counties, Northwest Ohio, USA. Journal of Paleolithic Archaeology, 2020, 3, 1034-1047.	0.7	5

#	Article	IF	Citations
19	Human behavior or taphonomy? On the breakage of Eastern North American Paleoindian endscrapers. Archaeological and Anthropological Sciences, 2020, 12, 1.	0.7	2
20	The non-invention of the ceramic arrowhead in world archaeology. Journal of Archaeological Science: Reports, 2020, 31, 102283.	0.2	9
21	Miniaturization optimized weapon killing power during the social stress of late pre-contact North America (AD 600-1600). PLoS ONE, 2020, 15, e0230348.	1.1	28
22	Evaluating the effects of parallax in archaeological geometric morphometric analyses. Archaeological and Anthropological Sciences, 2020, 12, 1.	0.7	4
23	Scaling human sociopolitical complexity. PLoS ONE, 2020, 15, e0234615.	1.1	5
24	Hunter-gatherer gatherings: stone-tool microwear from the Welling Site (33-Co-2), Ohio, U.S.A. supports Clovis use of outcrop-related base camps during the Pleistocene Peopling of the Americas. World Archaeology, 2019, 51, 47-75.	0.5	26
25	Thermal engineering of stone increased prehistoric toolmaking skill. Scientific Reports, 2019, 9, 14591.	1.6	26
26	The small-world topology of Clovis lithic networks. Archaeological and Anthropological Sciences, 2019, 11, 3537-3548.	0.7	15
27	The Black Diamond Site, Northeast Ohio, USA: a New Clovis Occupation in a Proposed Secondary Staging Area. Journal of Paleolithic Archaeology, 2019, 2, 211-233.	0.7	14
28	Nine-thousand years of optimal toolstone selection through the North American Holocene. Antiquity, 2019, 93, 313-324.	0.5	11
29	Settling into the country: Comparison of Clovis and Folsom lithic networks in western North America shows increasing redundancy of toolstone use. Journal of Anthropological Archaeology, 2019, 53, 32-42.	0.7	37
30	Investigating the scale of prehistoric social networks using culture, language, and point types in western North America. Archaeological and Anthropological Sciences, 2019, 11, 199-207.	0.7	5
31	Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) Dating of Two Burned Clovis Wyandotte Chert Lithic Specimens from Paleo Crossing (33ME274), Ohio, USA. Lithic Technology, 2018, 43, 18-25.	0.4	5
32	SCALING THE SIZE, STRUCTURE, AND DYNAMICS OF RESIDENTIALLY MOBILE HUNTER-GATHERER CAMPS. American Antiquity, 2018, 83, 701-720.	0.6	28
33	AN ASSESSMENT OF STONE WEAPON TIP STANDARDIZATION DURING THE CLOVIS–FOLSOM TRANSITION IN THE WESTERN UNITED STATES. American Antiquity, 2018, 83, 721-734.	0.6	28
34	On the Late Paleoindian temporal assignment for the Honey Run Site (33-Co-3), Coshocton County, Ohio: A morphometric assessment of flaked stone stemmed lanceolate projectile points. Journal of Archaeological Science: Reports, 2018, 20, 588-595.	0.2	6
35	A New Look at Flaked Stone Projectiles from the Mixter Site (33-ER-4), Erie County, Ohio, USA. Lithic Technology, 2018, 43, 166-171.	0.4	3
36	Description, morphometrics, and microwear of Late Pleistocene-Early Holocene artifacts from Southwestern Kentucky, U.S.A Journal of Archaeological Science: Reports, 2018, 20, 516-523.	0.2	10

#	Article	IF	CITATIONS
37	Explaining the origin of fluting in North American Pleistocene weaponry. Journal of Archaeological Science, 2017, 81, 23-30.	1.2	69
38	Environment-induced changes in selective constraints on social learning during the peopling of the Americas. Scientific Reports, 2017, 7, 44431.	1.6	16
39	The morphometrics and microwear of a small Clovis assemblage from Guernsey County, Southeastern Ohio, U.S.A Journal of Archaeological Science: Reports, 2017, 15, 318-329.	0.2	14
40	Cultural learning and the Clovis colonization of North America. Evolutionary Anthropology, 2017, 26, 270-284.	1.7	14
41	Clovis Colonization of Eastern North America: A Phylogenetic Approach. Science and Technology of Archaeological Research, 2016, 2, 67-89.	2.4	7
42	On Identifying Stone Tool Production Techniques: An Experimental and Statistical Assessment of Pressure Versus Soft Hammer Percussion Flake Form. American Antiquity, 2016, 81, 737-751.	0.6	8
43	The Wauseon Clovis fluted point preform, Northwest Ohio, U.S.A.: Observations, geometric morphometrics, microwear, and toolstone procurement distance. Journal of Archaeological Science: Reports, 2016, 10, 147-154.	0.2	13
44	Test, Model, and Method Validation: The Role of Experimental Stone Artifact Replication in Hypothesis-driven Archaeology. Ethnoarchaeology, 2016, 8, 103-136.	0.4	156
45	Drivers of technological richness in prehistoric Texas: an archaeological test of the population size and environmental risk hypotheses. Archaeological and Anthropological Sciences, 2016, 8, 625-634.	0.7	32
46	Lithic networks reveal early regionalization in late Pleistocene North America. Journal of Archaeological Science, 2016, 65, 114-121.	1.2	47
47	Statistical Analysis of Paradigmatic Class Richness Supports Greater Paleoindian Projectile-Point Diversity in the Southeast. American Antiquity, 2016, 81, 174-192.	0.6	44
48	Design Space and Cultural Transmission: Case Studies from Paleoindian Eastern North America. Journal of Archaeological Method and Theory, 2016, 23, 692-740.	1.4	30
49	On Identifying Stone Tool Production Techniques: An Experimental and Statistical Assessment of Pressure Versus Soft Hammer Percussion Flake Form. American Antiquity, 2016, 81, 737-751.	0.6	2
50	Transmission of Cultural Variants in the North American Paleolithic. , 2015, , 121-143.		14
51	Taphonomic analysis of the Folsom bonebed at Lake Theo, Texas. North American Archaeologist, 2015, 36, 170-196.	0.3	22
52	"DISSECTING―QUARTZITE AND BASALT BIPOLAR FLAKE SHAPE: A MORPHOMETRIC COMPARISON OF EXPERIMENTAL REPLICATIONS FROM OLDUVAI GORGE, TANZANIA. Lithic Technology, 2015, 40, 332-341.	0.4	20
53	Social learning and technological evolution during the Clovis colonization of the New World. Journal of Human Evolution, 2015, 80, 159-170.	1.3	81
54	Neutron activation analysis of 12,900-year-old stone artifacts confirms 450–510+ km Clovis tool-stone acquisition at Paleo Crossing (33ME274), northeast Ohio, U.S.A Journal of Archaeological Science, 2015, 53, 550-558.	1.2	77

#	Article	IF	CITATIONS
55	Size, shape, scars, and spatial patterning: A quantitative assessment of late Pleistocene (Clovis) point resharpening. Journal of Archaeological Science: Reports, 2015, 3, 11-21.	0.2	49
56	Solutreanism. Antiquity, 2014, 88, 622-624.	0.5	8
57	On thin ice: problems with Stanford and Bradley's proposed Solutrean colonisation of North America. Antiquity, 2014, 88, 606-613.	0.5	36
58	Continent-wide or region-specific? A geometric morphometrics-based assessment of variation in Clovis point shape. Archaeological and Anthropological Sciences, 2014, 6, 145-162.	0.7	107
59	Innovation and cultural transmission in the American Paleolithic: Phylogenetic analysis of eastern Paleoindian projectile-point classes. Journal of Anthropological Archaeology, 2014, 34, 100-119.	0.7	98
60	Population Size as an Explanation for Patterns in the Paleolithic Archaeological Record. Current Anthropology, 2013, 54, S388-S396.	0.8	85
61	Clovis Paleoecology and Lithic Technology in the Central Rio Grande Rift Region, New Mexico. American Antiquity, 2013, 78, 248-265.	0.6	25
62	Trees, thickets, or something in between? Recent theoretical and empirical work in cultural phylogeny. Israel Journal of Ecology and Evolution, 2013, 59, 45-61.	0.2	15
63	Population Size and Cultural Evolution in Nonindustrial Food-Producing Societies. PLoS ONE, 2013, 8, e72628.	1.1	80
64	Cultural Cladistics and the Early Prehistory of North America. , 2012, , 23-42.		16
65	An Assessment of the Impact of Hafting on Paleoindian Point Variability. PLoS ONE, 2012, 7, e36364.	1.1	23
66	A Morphometric Assessment of the Intended Function of Cached Clovis Points. PLoS ONE, 2012, 7, e30530.	1.1	35
67	Risk of Resource Failure and Toolkit Variation in Small-Scale Farmers and Herders. PLoS ONE, 2012, 7, e40975.	1.1	13
68	Points and prey: a quantitative test of the hypothesis that prey size influences early Paleoindian projectile point form. Journal of Archaeological Science, 2011, 38, 852-864.	1.2	69
69	A comment on Steele's (2010) "radiocarbon dates as data: quantitative strategies for estimating colonization front speeds and event densitiesâ€. Journal of Archaeological Science, 2011, 38, 2116-2122.	1.2	28
70	Niche Construction and the Toolkits of Hunter–Gatherers and Food Producers. Biological Theory, 2011, 6, 251-259.	0.8	40
71	Archaeological Support for the Three-Stage Expansion of Modern Humans across Northeastern Eurasia and into the Americas. PLoS ONE, 2010, 5, e12472.	1.1	38
72	A geometric morphometrics-based assessment of blade shape differences among Paleoindian projectile point types from western North America. Journal of Archaeological Science, 2010, 37, 350-359.	1.2	104

#	Article	IF	CITATIONS
73	Spatiotemporal dynamics of the Clovis–Folsom transition. Journal of Archaeological Science, 2010, 37, 2513-2519.	1.2	68
74	The impact of changing grasslands on Late Quaternary bison of the Southern Plains. Quaternary International, 2010, 217, 117-130.	0.7	13
75	A Formal Test of the Origin of Variation in North American Early Paleoindian Projectile Points. American Antiquity, 2009, 74, 279-298.	0.6	71
76	The accumulation of stochastic copying errors causes drift in culturally transmitted technologies: Quantifying Clovis evolutionary dynamics. Journal of Anthropological Archaeology, 2009, 28, 55-69.	0.7	104
77	Paleoindian demography and the extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11651-11654.	3.3	103
78	Phenetics, cladistics, and the search for the Alaskan ancestors of the Paleoindians: a reassessment of relationships among the Clovis, Nenana, and Denali archaeological complexes. Journal of Archaeological Science, 2008, 35, 1683-1694.	1.2	58
79	Spatial gradients in Clovis-age radiocarbon dates across North America suggest rapid colonization from the north. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15625-15630.	3.3	120
80	A Morphometric Approach to Assessing Late Paleoindian Projectile Point Variability on the Southern High Plains. Plains Anthropologist, 2007, 52, 279-299.	0.6	21
81	Investigating the peopling of North America through cladistic analyses of Early Paleoindian projectile points. Journal of Anthropological Archaeology, 2007, 26, 366-393.	0.7	118
82	An analysis of Folsom projectile point resharpening using quantitative comparisons of form and allometry. Journal of Archaeological Science, 2006, 33, 185-199.	1.2	91
83	Sexing Bison Metapodials Using Principal Component Analysis. Plains Anthropologist, 2005, 50, 159-172.	0.6	30
84	The Effects of Sample Bias on Paleoindian Fluted Point Recovery in the United States. North American Archaeologist, 2003, 24, 311-338.	0.3	21
85	Folsom Lithic Procurement, Tool Use, and Replacement at the Lake Theo Site, Texas. Plains Anthropologist, 2002, 47, 121-146.	0.6	12