Jingsong Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5116973/publications.pdf

Version: 2024-02-01

257450 315739 1,982 38 24 38 citations g-index h-index papers 40 40 40 2989 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Butyrate Ameliorates Mitochondrial Respiratory Capacity of The Motor-Neuron-like Cell Line NSC34-G93A, a Cellular Model for ALS. Biomolecules, 2022, 12, 333.	4.0	9
2	MG53 preserves mitochondrial integrity of cardiomyocytes during ischemia reperfusion-induced oxidative stress. Redox Biology, 2022, 54, 102357.	9.0	17
3	TRIC-A regulates intracellular Ca2+ homeostasis in cardiomyocytes. Pflugers Archiv European Journal of Physiology, 2021, 473, 547-556.	2.8	5
4	Ca2+-mediated coupling between neuromuscular junction and mitochondria in skeletal muscle. Neuroscience Letters, 2021, 754, 135899.	2.1	2
5	Butyrate Feeding Reverses CypD-Related Mitoflash Phenotypes in Mouse Myofibers. International Journal of Molecular Sciences, 2021, 22, 7412.	4.1	5
6	Old and new biomarkers for volumetric muscle loss. Current Opinion in Pharmacology, 2021, 59, 61-69.	3.5	8
7	MG53 Preserves Neuromuscular Junction Integrity and Alleviates ALS Disease Progression. Antioxidants, 2021, 10, 1522.	5.1	6
8	TRIC-A Channel Maintains Store Calcium Handling by Interacting With Type 2 Ryanodine Receptor in Cardiac Muscle. Circulation Research, 2020, 126, 417-435.	4.5	19
9	Physiological Ca2+ Transients Versus Pathological Steady-State Ca2+ Elevation, Who Flips the ROS Coin in Skeletal Muscle Mitochondria. Frontiers in Physiology, 2020, 11, 595800.	2.8	16
10	Integrating Bioelectrical Currents and Ca ²⁺ Signaling with Biochemical Signaling in Development and Pathogenesis. Bioelectricity, 2020, 2, 210-220.	1.1	3
11	Sustained elevation of MG53 in the bloodstream increases tissue regenerative capacity without compromising metabolic function. Nature Communications, 2019, 10, 4659.	12.8	47
12	Dysregulated mitochondrial Ca2+ and ROS signaling in skeletal muscle of ALS mouse model. Archives of Biochemistry and Biophysics, 2019, 663, 249-258.	3.0	36
13	\hat{l}^2 -aminoisobutyric Acid, l-BAIBA, Is a Muscle-Derived Osteocyte Survival Factor. Cell Reports, 2018, 22, 1531-1544.	6.4	131
14	Inhibition of p70 S6 kinase activity by A77 1726 induces autophagy and enhances the degradation of superoxide dismutase 1 (SOD1) protein aggregates. Cell Death and Disease, 2018, 9, 407.	6.3	35
15	ALS-associated mutation SOD1G93A leads to abnormal mitochondrial dynamics in osteocytes. Bone, 2018, 106, 126-138.	2.9	33
16	ROS-related mitochondrial dysfunction in skeletal muscle of an ALS mouse model during the disease progression. Pharmacological Research, 2018, 138, 25-36.	7.1	57
17	Target Intestinal Microbiota to Alleviate Disease Progression in Amyotrophic Lateral Sclerosis. Clinical Therapeutics, 2017, 39, 322-336.	2.5	182
18	Absence of physiological Ca2+ transients is an initial trigger for mitochondrial dysfunction in skeletal muscle following denervation. Skeletal Muscle, 2017, 7, 6.	4.2	44

#	Article	IF	CITATIONS
19	Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Science Translational Medicine, 2017, 9, .	12.4	139
20	Inhibition of p70 S6 kinase (S6K1) activity by A77 1726, the active metabolite of leflunomide, induces autophagy through TAK1-mediated AMPK and JNK activation. Oncotarget, 2017, 8, 30438-30454.	1.8	23
21	MG53 permeates through blood-brain barrier to protect ischemic brain injury. Oncotarget, 2016, 7, 22474-22485.	1.8	54
22	Phosphatase and tensin homologue (PTEN)-induced putative kinase 1 reduces pancreatic \hat{l}^2 -cells apoptosis in glucotoxicity through activation of autophagy. Biochemical and Biophysical Research Communications, 2016, 476, 299-305.	2.1	3
23	Mitochondrial Ca2+ uptake in skeletal muscle health and disease. Science China Life Sciences, 2016, 59, 770-776.	4.9	25
24	Mitoflash altered by metabolic stress in insulin-resistant skeletal muscle. Journal of Molecular Medicine, 2015, 93, 1119-1130.	3.9	27
25	Impaired Bone Homeostasis in Amyotrophic Lateral Sclerosis Mice with Muscle Atrophy. Journal of Biological Chemistry, 2015, 290, 8081-8094.	3.4	32
26	Muscle-Bone Crosstalk in Amyotrophic Lateral Sclerosis. Current Osteoporosis Reports, 2015, 13, 274-279.	3.6	11
27	Suppressed autophagy flux in skeletal muscle of an amyotrophic lateral sclerosis mouse model during disease progression. Physiological Reports, 2015, 3, e12271.	1.7	40
28	Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiological Reports, 2015, 3, e12356.	1.7	195
29	Inhibition of p70 S6 Kinase (S6K1) Activity by A77 1726 and Its Effect on Cell Proliferation and Cell Cycle Progress. Neoplasia, 2014, 16, 824-834.	5.3	32
30	Assessment of Calcium Sparks in Intact Skeletal Muscle Fibers. Journal of Visualized Experiments, 2014, , e50898.	0.3	9
31	Defective Mitochondrial Dynamics Is an Early Event in Skeletal Muscle of an Amyotrophic Lateral Sclerosis Mouse Model. PLoS ONE, 2013, 8, e82112.	2.5	94
32	Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals. Cell Research, 2011, 21, 1295-1304.	12.0	110
33	Mitochondrial Calcium Uptake Regulates Rapid Calcium Transients in Skeletal Muscle during Excitation-Contraction (E-C) Coupling. Journal of Biological Chemistry, 2011, 286, 32436-32443.	3.4	80
34	Hyperactive Intracellular Calcium Signaling Associated with Localized Mitochondrial Defects in Skeletal Muscle of an Animal Model of Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2010, 285, 705-712.	3.4	114
35	Ca2+ sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5235-5240.	7.1	71
36	A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. American Journal of Physiology - Cell Physiology, 2006, 290, C539-C553.	4.6	66

#	Article	IF	CITATIONS
37	Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nature Cell Biology, 2005, 7, 525-530.	10.3	151
38	Regulation of Ca2+ Sparks by Ca2+ and Mg2+ in Mammalian and Amphibian Muscle. An RyR Isoform-specific Role in Excitation–Contraction Coupling?. Journal of General Physiology, 2004, 124, 409-428.	1.9	51