Jinkui Feng

List of Publications by Citations

Source: https://exaly.com/author-pdf/5116568/jinkui-feng-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 12,206 245 101 h-index g-index citations papers 10.6 15,658 253 7.12 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
245	Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. <i>Advanced Materials</i> , 2008 , 20, 258-262	24	900
244	Enhanced Capacity and Rate Capability of Nitrogen/Oxygen Dual-Doped Hard Carbon in Capacitive Potassium-Ion Storage. <i>Advanced Materials</i> , 2018 , 30, 1700104	24	499
243	Embedding MnO@Mn O Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage. <i>Advanced Materials</i> , 2018 , 30, 1704244	24	280
242	One-Step Construction of N,P-Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage. <i>Advanced Materials</i> , 2018 , 30, e1802310	24	278
241	Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. <i>Energy and Environmental Science</i> , 2016 , 9, 1430-143	3 8 ^{5.4}	277
240	Facile Fabrication of Nitrogen-Doped Porous Carbon as Superior Anode Material for Potassium-Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1802386	21.8	267
239	Hollow nanospheres of mesoporous Co 9 S 8 as a high-capacity and long-life anode for advanced lithium ion batteries. <i>Nano Energy</i> , 2015 , 12, 528-537	17.1	256
238	MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. <i>Journal of Power Sources</i> , 2010 , 195, 4410-4413	8.9	234
237	Flexible and Free-Standing TiCT MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries. <i>ACS Nano</i> , 2019 , 13, 11676-11685	16.7	213
236	Commercial expanded graphite as a lowflost, long-cycling life anode for potassiumfon batteries with conventional carbonate electrolyte. <i>Journal of Power Sources</i> , 2018 , 378, 66-72	8.9	208
235	The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 1229-1236	35.4	195
234	Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 4993-5002	16.7	193
233	Hierarchical Porous Nanosheets Constructed by Graphene-Coated, Interconnected TiO Nanoparticles for Ultrafast Sodium Storage. <i>Advanced Materials</i> , 2018 , 30, 1705788	24	191
232	Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 12932-12940	16.7	167
231	Vacuum distillation derived 3D porous current collector for stable lithium thetal batteries. <i>Nano Energy</i> , 2018 , 47, 503-511	17.1	165
230	Hierarchical Carbon Nanotubes with a Thick Microporous Wall and Inner Channel as Efficient Scaffolds for LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 1571-1579	15.6	162
229	Sole Chemical Confinement of Polysulfides on Nonporous Nitrogen/Oxygen Dual-Doped Carbon at the Kilogram Scale for LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1604265	15.6	157

(2015-2019)

228	Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 11, 10004-10011	9.5	154
227	A controlled red phosphorus@NiP core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. <i>Energy and Environmental Science</i> , 2017 , 10, 1222-1	23³ ^{35.4}	146
226	Ultrasmall SnS2 nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10719-10726	13	144
225	Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries. <i>Nanoscale</i> , 2015 , 7, 17211-30	7.7	115
224	Nanoporous germanium as high-capacity lithium-ion battery anode. <i>Nano Energy</i> , 2015 , 13, 651-657	17.1	114
223	Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. <i>Nano Energy</i> , 2013 , 2, 498-504	17.1	112
222	A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9716-9725	13	110
221	Rationally Incorporated MoS/SnS Nanoparticles on Graphene Sheets for Lithium-Ion and Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 27697-27706	9.5	106
220	Nitrogen-Doped Graphene-Supported Mixed Transition-Metal Oxide Porous Particles to Confine Polysulfides for LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1800595	21.8	105
219	High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification. <i>Carbon</i> , 2018 , 130, 487-494	10.4	104
218	Unusual Formation of CoO@C DandelionsDerived from 2D KagThe MOLs for Efficient Lithium Storage. <i>Advanced Energy Materials</i> , 2018 , 8, 1703242	21.8	103
217	A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. <i>Chemical Engineering Journal</i> , 2018 , 345, 536-544	14.7	102
216	Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application. <i>Chemical Engineering Journal</i> , 2018 , 347, 12-18	14.7	99
215	Morphology- and Porosity-Tunable Synthesis of 3D Nanoporous SiGe Alloy as a High-Performance Lithium-Ion Battery Anode. <i>ACS Nano</i> , 2018 , 12, 2900-2908	16.7	99
214	Boosting Zinc-Ion Storage Capability by Effectively Suppressing Vanadium Dissolution Based on Robust Layered Barium Vanadate. <i>Nano Letters</i> , 2020 , 20, 2899-2906	11.5	97
213	Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16728-16736	13	96
212	Nanoporous Red Phosphorus on Reduced Graphene Oxide as Superior Anode for Sodium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 7380-7387	16.7	93
211	Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 287, 177-183	8.9	88

210	Scalable and Physical Synthesis of 2D Silicon from Bulk Layered Alloy for Lithium-Ion Batteries and Lithium Metal Batteries. <i>ACS Nano</i> , 2019 , 13, 13690-13701	16.7	88
209	Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@polypyrrole@graphene film. <i>Chemical Engineering Journal</i> , 2018 , 334, 184-190	14.7	86
208	Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors. <i>Carbon</i> , 2018 , 138, 264-270	10.4	86
207	Porosity- and Graphitization-Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium-Metal Anode. <i>Advanced Functional Materials</i> , 2020 , 30, 1908721	15.6	85
206	Emerging Catalysts to Promote Kinetics of LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2002893	21.8	85
205	Sulfiphilic Few-Layered MoSe2 Nanoflakes Decorated rGO as a Highly Efficient Sulfur Host for Lithium-Sulfur Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1901896	21.8	84
204	Ultrafine TiO Confined in Porous-Nitrogen-Doped Carbon from Metal-Organic Frameworks for High-Performance Lithium Sulfur Batteries. <i>ACS Applied Materials & Discourt & Discourt </i>	9 .5	80
203	Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10098-10104	13	80
202	Enhanced rate performance and cycling stability of a CoCO3polypyrrole composite for lithium ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11200	13	80
201	Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. <i>ACS Applied Materials & Description of Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. ACS Applied Materials & Description of Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. <i>ACS Applied Materials & Description of Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries.</i></i>	1 ⁹ 0 ⁵ 18	678
200	Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium Belenium batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4539-4546	13	78
199	A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs. <i>Chemical Communications</i> , 2017 , 53, 8360-8363	5.8	77
198	3D Co3O4 and CoO@C wall arrays: morphology control, formation mechanism, and lithium-storage properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11597	13	76
197	Layered (NH4)2V6O16[1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19130-19139	13	72
196	Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers. <i>Poultry Science</i> , 2007 , 86, 1149-54	3.9	72
195	Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10336-10344	13	70
194	Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles. <i>Journal of Alloys and Compounds</i> , 2018 , 748, 854-860	5.7	70
193	Stable all-solid-state potassium battery operating at room temperature with a composite polymer electrolyte and a sustainable organic cathode. <i>Journal of Power Sources</i> , 2018 , 399, 294-298	8.9	70

(2018-2007)

1	192	Effect of fermented soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. <i>Digestive Diseases and Sciences</i> , 2007 , 52, 1845-50	4	69	
1	191	Metal © rganic Framework Derived Iron Sulfide©arbon CoreBhell Nanorods as a Conversion-Type Battery Material. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 5039-5048	8.3	64	
1	190	Triple-walled SnO2@N-doped carbon@SnO2 nanotubes as an advanced anode material for lithium and sodium storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23194-23200	13	64	
1	189	Hierarchical Microcables Constructed by CoP@C?Carbon Framework Intertwined with Carbon Nanotubes for Efficient Lithium Storage. <i>Advanced Energy Materials</i> , 2020 , 10, 1902913	21.8	64	
1	ι88	Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Lifhetal anode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18861-18870	13	62	
1	187	Micron-Sized Nanoporous Vanadium Pentoxide Arrays for High-Performance Gel Zinc-Ion Batteries and Potassium Batteries. <i>Chemistry of Materials</i> , 2020 , 32, 4054-4064	9.6	62	
1	ı86	Multifunctional CoO@C metasequoia arrays for enhanced lithium storage. <i>Nano Energy</i> , 2014 , 7, 52-62	17.1	60	
1	د85	Walnut-inspired microsized porous silicon/graphene coreEhell composites for high-performance lithium-ion battery anodes. <i>Nano Research</i> , 2017 , 10, 4274-4283	10	58	
1	ι8 4	Recent Advances of Emerging 2D MXene for Stable and Dendrite-Free Metal Anodes. <i>Advanced Functional Materials</i> , 2020 , 30, 2004613	15.6	58	
1	183	Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. <i>ACS Nano</i> , 2021 , 15, 9244-9272	16.7	58	
1	182	Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. <i>Energy Storage Materials</i> , 2020 , 26, 223-233	19.4	57	
1	181	Recent Advances and Perspectives of Zn-Metal Free B ocking-Chair Type Zn-Ion Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2002529	21.8	52	
1	ι8ο	Li7P3S11/poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries. <i>Journal of Power Sources</i> , 2018 , 400, 212-217	8.9	51	
1	179	Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. <i>Chemical Engineering Journal</i> , 2020 , 400, 125843	14.7	50	
1	178	Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge. <i>Journal of Power Sources</i> , 2018 , 386, 77-84	8.9	50	
1	177	ZnO/CoO and ZnCo2O4 Hierarchical Bipyramid Nanoframes: Morphology Control, Formation Mechanism, and Their Lithium Storage Properties. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2015 , 7, 2284	18 - 57	49	
1	176	Design of Robust, Lithiophilic, and Flexible Inorganic-Polymer Protective Layer by Separator Engineering Enables Dendrite-Free Lithium Metal Batteries with LiNi Mn Co O Cathode. <i>Small</i> , 2021 , 17, e2007717	11	49	
1	175	High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1574-1581	13	48	

174	Carboxylated carbon nanotube anchored MnCO3 nanocomposites as anode materials for advanced lithium-ion batteries. <i>Materials Letters</i> , 2013 , 111, 165-168	3.3	47
173	Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life. <i>Journal of Power Sources</i> , 2019 , 413, 302-309	8.9	47
172	Two-Dimensional Silicon/Carbon from Commercial Alloy and CO for Lithium Storage and Flexible TiCT MXene-Based Lithium-Metal Batteries. <i>ACS Nano</i> , 2020 ,	16.7	46
171	Stable Aqueous Anode-Free Zinc Batteries Enabled by Interfacial Engineering. <i>Advanced Functional Materials</i> , 2021 , 31, 2101886	15.6	46
170	Nonflammable electrolyte for safer non-aqueous sodium batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14539-14544	13	45
169	One-pot solvothermal synthesis of graphene wrapped rice-like ferrous carbonate nanoparticles as anode materials for high energy lithium-ion batteries. <i>Nanoscale</i> , 2015 , 7, 232-9	7.7	45
168	Recent advances and perspectives in stable and dendrite-free potassium metal anodes. <i>Energy Storage Materials</i> , 2020 , 30, 206-227	19.4	44
167	Room-Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binder-Free Anode for Next-Generation Lithium-Ion Batteries. <i>Small</i> , 2019 , 15, e1903214	11	43
166	Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel. <i>Chemosphere</i> , 2018 , 191, 389-399	8.4	42
165	Metal-organic framework-derived graphene@nitrogen doped carbon@ultrafine TiO nanocomposites as high rate and long-life anodes for sodium ion batteries. <i>Chemical Communications</i> , 2016 , 52, 12810-12812	5.8	42
164	Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. <i>Energy Storage Materials</i> , 2021 , 34, 12-21	19.4	42
163	Sandwich-Like FeCl3@C as High-Performance Anode Materials for Potassium-Ion Batteries. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800606	4.6	41
162	Ether-based nonflammable electrolyte for room temperature sodium battery. <i>Journal of Power Sources</i> , 2015 , 284, 222-226	8.9	40
161	One-Step In Situ Formation of N-doped Carbon Nanosheet 3D Porous Networks/TiO2 Hybrids with Ultrafast Sodium Storage. <i>Advanced Energy Materials</i> , 2019 , 9, 1803070	21.8	40
160	Quantum-Matter Bi/TiO2 Heterostructure Embedded in N-Doped Porous Carbon Nanosheets for Enhanced Sodium Storage. <i>Small Structures</i> , 2021 , 2, 2000085	8.7	40
159	Crumpled Ti3C2Tx (MXene) nanosheet encapsulated LiMn2O4 for high performance lithium-ion batteries. <i>Electrochimica Acta</i> , 2019 , 309, 362-370	6.7	39
158	Facile synthesis of N,O-codoped hard carbon on the kilogram scale for fast capacitive sodium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16465-16474	13	39
157	Controllable Phosphorylation Strategy for Free-Standing Phosphorus/Nitrogen Cofunctionalized Porous Carbon Monoliths as High-Performance Potassium Ion Battery Anodes. <i>ACS Nano</i> , 2020 , 14, 140	05 7 6740) 6 9

15	56	Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries. <i>ACS Nano</i> , 2021 ,	16.7	39	
15	55	Nanostructured V2O5 arrays on metal substrate as binder free cathode materials for sodium-ion batteries. <i>Electrochimica Acta</i> , 2015 , 182, 769-774	6.7	38	
15	54	Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. <i>Journal of Power Sources</i> , 2018 , 392, 116-122	8.9	38	
15	53	NASICON-Structured LiGe2(PO4)3 with Improved Cyclability for High-Performance Lithium Batteries. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20514-20520	3.8	38	
15	52	Oxygen Defects Engineering of VO2[kH2O Nanosheets via In Situ Polypyrrole Polymerization for Efficient Aqueous Zinc Ion Storage. <i>Advanced Functional Materials</i> , 2021 , 31, 2103070	15.6	37	
15	51	Rational Design of Sulfur-Doped Three-Dimensional TiCT MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries. <i>ACS Nano</i> , 2021 , 15, 15259-15273	16.7	37	
15	50	Nonflammable Fluorinated Carbonate Electrolyte with High Salt-to-Solvent Ratios Enables Stable Silicon-Based Anode for Next-Generation Lithium-Ion Batteries. <i>ACS Applied Materials & Materials & Acs Applied Materials & Interfaces</i> , 2019 , 11, 23229-23235	9.5	36	
14	19	Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries. <i>Electrochimica Acta</i> , 2013 , 114, 688-692	6.7	36	
14	48	Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15563-15571	16.4	36	
14	4 7	Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. <i>Energy Storage Materials</i> , 2021 , 41, 343-353	19.4	36	
14	46	Lithium metal protection enabled by in-situ olefin polymerization for high-performance secondary lithium sulfur batteries. <i>Journal of Power Sources</i> , 2017 , 363, 193-198	8.9	35	
14	45	Sandwich Structures Constructed by ZnSe?N-C@MoSe2 Located in Graphene for Efficient Sodium Storage. <i>Advanced Energy Materials</i> , 2020 , 10, 2002298	21.8	35	
14	14	Functional regeneration of tendons using scaffolds with physical anisotropy engineered via microarchitectural manipulation. <i>Science Advances</i> , 2018 , 4, eaat4537	14.3	35	
14	43	Green and tunable fabrication of graphene-like N-doped carbon on a 3D metal substrate as a binder-free anode for high-performance potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 21966-21975	13	34	
14	4 2	Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. <i>Nano Research</i> , 2020 , 13, 2673-2682	10	33	
14	41	Recent advance of biomass-derived carbon as anode for sustainable potassium ion battery. <i>Chemical Engineering Journal</i> , 2021 , 405, 126897	14.7	33	
14	40	Safe all-solid-state potassium batteries with three dimentional, flexible and binder-free metal sulfide array electrode. <i>Journal of Power Sources</i> , 2019 , 433, 226697	8.9	32	
13	39	Non-Flammable Phosphate Electrolyte with High Salt-to-Solvent Ratios for Safe Potassium-Ion Battery. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A1217-A1222	3.9	32	

138	Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020, 78, 1053	44 7.1	32
137	Hierarchical Octahedra Constructed by Cu S/MoS ?Carbon Framework with Enhanced Sodium Storage. <i>Small</i> , 2020 , 16, e2000952	11	31
136	In Situ Synthesis of a Lithiophilic Ag-Nanoparticles-Decorated 3D Porous Carbon Framework toward Dendrite-Free Lithium Metal Anodes. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15219	-8 3 227	7 ³¹
135	Graphene encapsulated Fe3O4 nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1185-1193	7.8	30
134	Tea polyphenols inactivate Cronobacter sakazakii isolated from powdered infant formula. <i>Journal of Dairy Science</i> , 2016 , 99, 1019-1028	4	30
133	In situ study of topography, phase and volume changes of titanium dioxide anode in all-solid-state thin film lithium-ion battery by biased scanning probe microscopy. <i>Journal of Power Sources</i> , 2012 , 197, 224-230	8.9	30
132	Synthesis of nanosized cadmium oxide (CdO) as a novel high capacity anode material for Lithium-ion batteries: influence of carbon nanotubes decoration and binder choice. <i>Electrochimica Acta</i> , 2014 , 129, 107-112	6.7	29
131	Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal. <i>Journal of Energy Chemistry</i> , 2020 , 41, 73-78	3 ¹²	29
130	Lithium storage capability of CuGeO3 nanorods. <i>Materials Research Bulletin</i> , 2012 , 47, 1693-1696	5.1	28
129	Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. <i>Chemical Engineering Journal</i> , 2022 , 431, 13427	7 ^{14.7}	28
128	Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion. <i>Energy Storage Materials</i> , 2020 , 32, 115-150	19.4	28
127	Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. <i>Nano Research</i> , 2021 , 14, 3576-3584	10	28
126	Stable and Safe Lithium Metal Batteries with Ni-Rich Cathodes Enabled by a High Efficiency Flame Retardant Additive. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2736-A2740	3.9	27
125	Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage. <i>Nano Today</i> , 2021 , 37, 101094	17.9	27
124	Stable and dendrite-free lithium metal anodes enabled by carbon paper incorporated with ultrafine lithiophilic TiO2 derived from MXene and carbon dioxide. <i>Chemical Engineering Journal</i> , 2021 , 406, 1268	3 4 .7	27
123	Hollow nanoporous red phosphorus as an advanced anode for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12992-12998	13	27
122	Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. <i>ACS Nano</i> , 2021 ,	16.7	27
121	Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries. <i>Journal of Power Sources</i> , 2019 , 416, 141-147	8.9	26

120	Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries. <i>Journal of Colloid and Interface Science</i> , 2019 , 554, 674-681	9.3	25
119	Artificial Solid Electrolyte Interphase Coating to Reduce Lithium Trapping in Silicon Anode for High Performance Lithium-Ion Batteries. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1901187	4.6	25
118	A novel bifunctional additive for safer lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 243, 29-32	8.9	25
117	Reduced graphene oxide decorated Pt activated SnO2 nanoparticles for enhancing methanol sensing performance. <i>Journal of Alloys and Compounds</i> , 2018 , 762, 8-15	5.7	25
116	Strongly Coupled W2C Atomic Nanoclusters on N/P-Codoped Graphene for Kinetically Enhanced Sulfur Host. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1802088	4.6	24
115	Electroless deposition of Ni3PNi arrays on 3-D nickel foam as a high performance anode for lithium-ion batteries. <i>RSC Advances</i> , 2015 , 5, 60870-60875	3.7	24
114	Scalable construction of SiO/wrinkled MXene composite by a simple electrostatic self-assembly strategy as anode for high-energy lithium-ion batteries. <i>Chinese Chemical Letters</i> , 2020 , 31, 980-983	8.1	24
113	Integrated nanocomposite of LiMn2O4/graphene/carbon nanotubes with pseudocapacitive properties as superior cathode for aqueous hybrid capacitors. <i>Journal of Electroanalytical Chemistry</i> , 2019, 842, 74-81	4.1	23
112	N-doped carbon nanotubes formed in a wide range of temperature and ramping rate for fast sodium storage. <i>Journal of Energy Chemistry</i> , 2020 , 49, 136-146	12	23
111	NiP nanoparticles bound on graphene sheets for advanced lithium-sulfur batteries. <i>Nanoscale</i> , 2020 , 12, 10760-10770	7.7	23
110	Carbon coated copper sulfides nanosheets synthesized via directly sulfurizing Metal-Organic Frameworks for lithium batteries. <i>Materials Letters</i> , 2016 , 181, 340-344	3.3	22
109	A heart-coronary arteries structure of carbon nanofibers/graphene/silicon composite anode for high performance lithium ion batteries. <i>Scientific Reports</i> , 2017 , 7, 9642	4.9	21
108	Enhancing kinetics of Li-S batteries by graphene-like N,S-codoped biochar fabricated in NaCl non-aqueous ionic liquid. <i>Science China Materials</i> , 2019 , 62, 455-464	7.1	21
107	New Insights into the Electrochemistry Superiority of Liquid Na-K Alloy in Metal Batteries. <i>Small</i> , 2019 , 15, e1804916	11	20
106	Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances. <i>Materials Research Bulletin</i> , 2015 , 70, 573-578	5.1	20
105	Hydrothermal growth of Cobalt germanate/reduced graphene oxide nanocomposite as superior anode materials for Lithium-ion batteries. <i>Electrochimica Acta</i> , 2014 , 150, 211-217	6.7	19
104	A High-Rate and Ultrastable Aqueous Zinc-Ion Battery with a Novel MgV O 🗓 .7H O Nanobelt Cathode. <i>Small</i> , 2021 , 17, e2100318	11	19
103	One-Step Construction of MoSSe/N-Doped Carbon Flower-like Hierarchical Microspheres with Enhanced Sodium Storage. <i>ACS Applied Materials & mp; Interfaces</i> , 2019 , 11, 44342-44351	9.5	18

102	Hydrothermal Synthesis of ZnWO4 Hierarchical Hexangular Microstars for Enhanced Lithium-Storage Properties. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 734-740	2.3	17
101	Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. <i>Energy Storage Materials</i> , 2021 , 38, 157-189	19.4	17
100	Enhancing the safety and electrochemical performance of ether based lithium sulfur batteries by introducing an efficient flame retarding additive. <i>RSC Advances</i> , 2016 , 6, 53560-53565	3.7	17
99	General formation of Mn-based transition metal oxide twin-microspheres with enhanced lithium storage properties. <i>RSC Advances</i> , 2015 , 5, 26863-26871	3.7	16
98	MnO2 nanotubes with a water soluble binder as high performance sodium storage materials. <i>RSC Advances</i> , 2016 , 6, 103579-103584	3.7	16
97	A novel bifunctional additive for 5 V-class, high-voltage lithium ion batteries. <i>RSC Advances</i> , 2016 , 6, 722	2 4.7 22	8 16
96	Systematic Exploration of the Role of a Modified Layer on the Separator in the Electrochemistry of Lithium-Sulfur Batteries. <i>ACS Applied Materials & District Separator</i> 10, 30306-30313	9.5	16
95	Green and facile synthesis of porous ZnCO3 as a novel anode material for advanced lithium-ion batteries. <i>Materials Letters</i> , 2014 , 118, 5-7	3.3	16
94	The effect of enrichment media on the stimulation of native ureolytic bacteria in calcareous sand. <i>International Journal of Environmental Science and Technology</i> , 2020 , 17, 1795-1808	3.3	16
93	Enhanced Cycling Performance of Li D 2 Battery by Using a Li3PO4-Protected Lithium Anode in DMSO-Based Electrolyte. <i>ACS Applied Energy Materials</i> , 2018 , 1, 5511-5517	6.1	16
92	Layer-by-Layer Stacked (NH4)2V4O9D.5H2O Nanosheet Assemblies with Intercalation Pseudocapacitance for High Rate Aqueous Zinc Ion Storage. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5343	- 53 52	15
91	High Voltage, Flexible and Low Cost All-Solid-State Lithium Metal Batteries with a Wide Working Temperature Range. <i>ChemistrySelect</i> , 2020 , 5, 1214-1219	1.8	15
90	Influences of Copper/Zinc-Loaded Montmorillonite on Growth Performance, Mineral Retention, Intestinal Morphology, Mucosa Antioxidant Capacity, and Cytokine Contents in Weaned Piglets. <i>Biological Trace Element Research</i> , 2018 , 185, 356-363	4.5	15
89	Enhanced heterogeneous activation of peroxydisulfate by S, N co-doped graphene via controlling S, N functionalization for the catalytic decolorization of dyes in water. <i>Chemosphere</i> , 2018 , 210, 120-128	8.4	15
88	CdCO3/Carbon nanotube nanocomposites as anode materials for advanced lithium-ion batteries. <i>Materials Letters</i> , 2014 , 114, 115-118	3.3	15
87	ELECTROCHEMICAL PROPERTY OF LiMn2O4 IN OVER-DISCHARGED CONDITIONS. <i>Functional Materials Letters</i> , 2012 , 05, 1250028	1.2	15
86	Effects of dietary copper (II) sulfate and copper proteinate on performance and blood indexes of copper status in growing pigs. <i>Biological Trace Element Research</i> , 2007 , 120, 171-8	4.5	15
85	TiO -Based Heterostructures with Different Mechanism: A General Synergistic Effect toward High-Performance Sodium Storage. <i>Small</i> , 2020 , 16, e2004054	11	15

Constructing ultrafine lithiophilic layer on MXene paper by sputtering for stable and flexible 3D lithium metal anode. <i>Chemical Engineering Journal</i> , 2021 , 421, 129685	14.7	15
One-Pot Solvothermal Synthesis of ZnO@£Co(OH)2 CoreBhell Hierarchical Microspheres with Superior Lithium Storage Properties. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 2984-2992	3.8	14
Green and facile synthesis of nanosized polythiophene as an organic anode for high-performance potassium-ion battery. <i>Functional Materials Letters</i> , 2018 , 11, 1840003	1.2	14
High Current Enabled Stable Lithium Anode for Ultralong Cycling Life of Lithium-Oxygen Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 11, 30793-30800	9.5	14
In situ synthesis of cadmium germanates (Cd2Ge2O6)/reduced graphene oxide nanocomposites as novel high capacity anode materials for advanced lithium-ion batteries. <i>Materials Letters</i> , 2014 , 122, 32	7 ^{.3} 3330	14
Boron-doped graphene coated Au@SnO2 for high-performance triethylamine gas detection. <i>Materials Chemistry and Physics</i> , 2020 , 239, 121961	4.4	14
Electrochemically Activated Vanadium Oxide Cathode for Advanced Aqueous Zn-Ion Batteries <i>Nano Letters</i> , 2021 ,	11.5	14
Design and Fabrication of an All-Solid-State Thin-Film Li-Ion Microbattery with Amorphous TiO2 as the Anode. <i>Energy Technology</i> , 2014 , 2, 397-400	3.5	13
A novel Lithium/Sodium hybrid aqueous electrolyte for hybrid supercapacitors based on LiFePO4 and activated carbon. <i>Functional Materials Letters</i> , 2016 , 09, 1642008	1.2	13
Mental-organic framework derived CuO hollow spheres as high performance anodes for sodium ion battery. <i>Materials Technology</i> , 2016 , 31, 497-500	2.1	13
Building stable solid electrolyte interphases (SEI) for microsized silicon anode and 5V-class cathode with salt engineered nonflammable phosphate-based lithium-ion battery electrolyte. <i>Applied Surface Science</i> , 2021 , 553, 149566	6.7	13
Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage <i>Advanced Materials</i> , 2022 , e2202673	24	13
Self-templated biomass-derived nitrogen-doped porous carbons as high-performance anodes for sodium ion batteries. <i>Materials Technology</i> , 2017 , 32, 592-597	2.1	12
Novel Method of Fabricating Free-Standing and Nitrogen-Doped 3D Hierarchically Porous Carbon Monoliths as Anodes for High-Performance Sodium-Ion Batteries by Supercritical CO Foaming. <i>ACS Applied Materials & Diversals (Supercritical Copy Applied Materials & Diversals)</i>	9.5	12
Li7P3S11 solid electrolyte coating silicon for high-performance lithium-ion batteries. <i>Electrochimica Acta</i> , 2018 , 276, 325-332	6.7	12
Facile hydrothermal growth of VO2 nanowire, nanorod and nanosheet arrays as binder free cathode materials for sodium batteries. <i>RSC Advances</i> , 2016 , 6, 14314-14320	3.7	12
Improved interfacial floatability of superhydrophobic and compressive S, N co-doped graphene aerogel by electrostatic spraying for highly efficient organic pollutants recovery from water. <i>Applied Surface Science</i> , 2018 , 457, 780-788	6.7	12
Recent development and prospect of potassium-ion batteries with high energy and high safety for post-lithium batteries. <i>Functional Materials Letters</i> , 2019 , 12, 1930002	1.2	11
	One-Pot Solvothermal Synthesis of ZnO@HCo(OH)2 CoreBhell Hierarchical Microspheres with Superior Lithium Storage Properties. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 2984-2992 Green and facile synthesis of nanosized polythiophene as an organic anode for high-performance potassium-ion battery. <i>Functional Materials Letters</i> , 2018 , 11, 1840003 High Current Enabled Stable Lithium Anode for Ultralong Cycling Life of Lithium-Oxygen Batteries. <i>ACS Applied Materials & Bamp; Interfaces</i> , 2019 , 11, 30793-30800 In situ synthesis of cadmium germanates (Cd2Ge2O6)/reduced graphene oxide nanocomposites as novel high capacity anode materials for advanced lithium-ion batteries. <i>Materials Letters</i> , 2014 , 122, 32* Boron-doped graphene coated Au@SnO2 for high-performance triethylamine gas detection. <i>Materials Chemistry and Physics</i> , 2020 , 239, 121961 Electrochemically Activated Vanadium Oxide Cathode for Advanced Aqueous Zn-Ion Batteries <i>Nano Letters</i> , 2021 , Design and Fabrication of an All-Solid-State Thin-Film Li-Ion Microbattery with Amorphous TiO2 as the Anode. <i>Energy Technology</i> , 2014 , 2, 397-400 A novel Lithium/Sodium hybrid aqueous electrolyte for hybrid supercapacitors based on LiFePO4 and activated carbon. <i>Functional Materials Letters</i> , 2016 , 09, 1642008 Mental-organic framework derived CuO hollow spheres as high performance anodes for sodium ion battery. <i>Materials Technology</i> , 2016 , 31, 497-500 Building stable solid electrolyte interphases (SEI) for microsized silicon anode and SV-class cathode with salt engineered nonflammable phosphate-based lithium-ion battery electrolyte. <i>Applied Surface Science</i> , 2021 , 553, 149566 Integrating BiGC Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage. <i>Advanced Materials</i> , 2022, e2202673 Self-templated biomas-derived nitrogen-doped porous carbons as high-performance anodes for sodium ion batteries. <i>Samp; Interfaces</i> , 2019 , 11, 9125-9135 Li7P3511 solid electrolyte coating silicon for high-performance lithium-ion b	Ithium metal anode. Chemical Engineering Journal, 2021, 421, 129685 14-7 One-Pot Solvothermal Synthesis of ZnO@Eco(OH)2 CoreBhell Hierarchical Microspheres with Superior Lithium Storage Properties. Journal of Physical Chemistry C, 2016, 120, 2984-2992 3.8 Green and Facile synthesis of nanosized polythiophene as an organic anode for high-performance potassium-ion battery. Functional Materials Letters, 2018, 11, 1840003 High Current Enabled Stable Lithium Anode for Ultralong Cycling Life of Lithium-Oxygen Batteries. ACS Applied Materials Ramp: Interfaces, 2019, 11, 30793-30800 In situ synthesis of cadmium germanates (Cd2Ge2O6)/reduced graphene oxide nanocomposites as novel high capacity anode materials for advanced lithium-ion batteries. Materials Letters, 2014, 122, 327-330 Boron-doped graphene coated Au@SnO2 for high-performance triethylamine gas detection. Materials Chemistry and Physics, 2020, 239, 121961 Electrochemically Activated Vanadium Oxide Cathode for Advanced Aqueous Zn-Ion Batteries. Nano Letters, 2021, Design and Fabrication of an All-Solid-State Thin-Film Li-Ion Microbattery with Amorphous TiO2 as the Amode. Energy Technology, 2014, 2, 397-400 A novel Lithium/Sodium hybrid aqueous electrolyte for hybrid supercapacitors based on LiFePO4 and activated carbon. Functional Materials Letters, 2016, 09, 1642008 1.2 Anovel Lithium/Sodium hybrid aqueous electrolyte for hybrid supercapacitors based on LiFePO4 and activated carbon. Functional Materials Letters, 2016, 09, 1642008 2.1 Mental-organic framework derived CuO hollow spheres as high performance anodes for sodium ion battery. Materials Technology, 2016, 31, 497-500 Building stable solid electrolyte interphases (SEI) for microsized silicon anode and SV-class cathode with salt engineered nonflammable phosphate-based lithium-ion battery electrolyte. Applied Sufface, 2021, 553, 149566 Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage. Advanced Materials, 2022, e2202673 Self-templated biomass-deriv

66	Biphenyl as overcharge protection additive for nonaqueous sodium batteries. <i>RSC Advances</i> , 2015 , 5, 96649-96652	3.7	11
65	A facile nitrogen-doped carbon encapsulation of CoFe2O4 nanocrystalline for enhanced performance of lithium ion battery anodes. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 19-27	2.6	10
64	Electrochemical Insights, Developing Strategies, and Perspectives toward Advanced Potassium-Sulfur Batteries. <i>Small</i> , 2020 , 16, e2003386	11	10
63	Low temperature synthesis of lead germanate (PbGeO3)/polypyrrole (PPy) nanocomposites and their lithium storage performance. <i>Materials Research Bulletin</i> , 2014 , 57, 238-242	5.1	9
62	High-Safety and High-Voltage Lithium Metal Batteries Enabled by a Nonflammable Ether-Based Electrolyte with Phosphazene as a Cosolvent. <i>ACS Applied Materials & District Materia</i>	109148	9
61	High-Surface-Area Nitrogen/Phosphorus Dual-Doped Hierarchical Porous Carbon Derived from Biochar for Sulfur Holder. <i>ChemistrySelect</i> , 2018 , 3, 10175-10181	1.8	9
60	Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2022 , 428, 131040	14.7	9
59	WSe2 'Flakelets on N-doped Graphene for Accelerating Polysulfide Redox and Regulating Li Plating. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	9
58	Controlled synthesis of copper reinforced nanoporous silicon microsphere with boosted electrochemical performance. <i>Journal of Power Sources</i> , 2020 , 455, 227967	8.9	8
57	Lithium dendrite suppression by facile interfacial barium engineering for stable 5 V-class lithium metal batteries with carbonate-based electrolyte. <i>Chemical Engineering Journal</i> , 2021 , 414, 128928	14.7	8
56	Vacancy and architecture engineering of porous FeP nanorods for achieving superior Li+ storage. <i>Chemical Engineering Journal</i> , 2021 , 429, 132249	14.7	8
55	Enhancing the electrode performance of Co3O4 through Co3O4@a-TiO2 corelhell microcubes with controllable pore size. <i>RSC Advances</i> , 2015 , 5, 40899-40906	3.7	7
54	Self-supporting soft carbon fibers as binder-free and flexible anodes for high-performance sodium-ion batteries. <i>Materials Technology</i> , 2018 , 33, 810-814	2.1	7
53	Fabrication, Characterization and In-Vitro Evaluation of Apatite-Based Microbeads for Bone Implant Science. <i>Ceramic Transactions</i> , 2014 , 179-190	0.1	7
52	Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries. <i>Chemical Engineering Journal</i> , 2022 , 430, 132748	14.7	7
51	Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted LithiumBulfur Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 15691-15699	3.6	7
50	Improving the corrosion resistance of micro-arc oxidation coated Mg-Zn-Ca alloy <i>RSC Advances</i> , 2020 , 10, 8244-8254	3.7	6
49	Facile preparation of fullerene nanorods for high-performance lithium-sulfur batteries. <i>Materials Letters</i> , 2018 , 228, 175-178	3.3	6

48	Dual-Functional NbN Ultrafine Nanocrystals Enabling Kinetically Boosted LithiumBulfur Batteries. <i>Advanced Functional Materials</i> ,2111586	15.6	6	
47	High-Safety and Dendrite-Free Lithium Metal Batteries Enabled by Building a Stable Interface in a Nonflammable Medium-Concentration Phosphate Electrolyte. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 50869-50877	9.5	6	
46	Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithiumBulfur batteries. <i>Nano Research</i> ,1	10	6	
45	Scalable and controlled synthesis of 2D nanoporous Co3O4 from bulk alloy for potassium ion batteries. <i>Materials Technology</i> , 2020 , 35, 594-599	2.1	5	
44	MXene/Organics Heterostructures Enable Ultrastable and High-Rate Lithium/Sodium Batteries <i>ACS Applied Materials & District Materials</i>	9.5	5	
43	One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries <i>ACS Nano</i> , 2022 ,	16.7	5	
42	MXenes and their derivatives for advanced aqueous rechargeable batteries. Materials Today, 2021,	21.8	5	
41	Zero-Strain Structure for Efficient Potassium Storage Nitrogen-Enriched Carbon Dual-Confinement CoP Composite. <i>Advanced Energy Materials</i> ,2103341	21.8	5	
40	High-Performance Stable Potassium Bulfur Batteries Enabled by Free-Standing CNT Film-Based Composite Cathodes. <i>Journal of Electronic Materials</i> , 2021 , 50, 3037-3042	1.9	5	
39	Cu3P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage. <i>Journal of Energy Chemistry</i> , 2022 , 66, 339-347	12	5	
38	Sodiophilic Mg -Decorated Ti C MXene for Dendrite-Free Sodium Metal Batteries with Carbonate-Based Electrolytes <i>Small</i> , 2022 , e2107637	11	5	
37	Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zinc-ion batteries. <i>SusMat</i> ,		5	
36	Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries. <i>Energy Storage Materials</i> , 2022 , 48, 447-457	19.4	5	
35	Boosting Na Storage Ability of Bimetallic Mo W Se with Expanded Interlayers. <i>Chemistry - A European Journal</i> , 2020 , 26, 9580-9588	4.8	4	
34	Optimizing the Supercapacitive Performance and Cyclability of Ni(OH)2 by Combining with CuO Concomitant with Mutual Doping. <i>ChemElectroChem</i> , 2019 , 6, 4831-4841	4.3	4	
33	Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte. <i>Journal of Energy Chemistry</i> , 2022 , 69, 221-221	12	4	
32	Carbon budgets of two typical polyculture pond systems in coastal China and their potential roles in the global carbon cycle. <i>Aquaculture Environment Interactions</i> , 2020 , 12, 105-115	2.9	4	
31	Systematic Study of Alkali Cations Intercalated Titanium Dioxide Effect on Sodium and Lithium Storage. <i>Small</i> , 2020 , 16, e2001391	11	4	

30	Bimetal CoNi Active Sites on Mesoporous Carbon Nanosheets to Kinetically Boost Lithium-Sulfur Batteries. <i>Small</i> , 2021 , 17, e2100414	11	4
29	Activation of mu-opioid receptors in thalamic nucleus submedius depresses bee venom-evoked spinal c-Fos expression and flinching behavior. <i>Neuroscience</i> , 2009 , 161, 554-60	3.9	3
28	Rationally Designed Three-Layered TiO @amorphous MoS @Carbon Hierarchical Microspheres for Efficient Potassium Storage <i>Small</i> , 2022 , e2107819	11	3
27	Porous lithium cobalt oxide fabricated from metal-organic frameworks as a high-rate cathode for lithium-ion batteries <i>RSC Advances</i> , 2020 , 10, 31889-31893	3.7	3
26	Dual-Functional MgO Nanocrystals Satisfying Both Polysulfides and Li Regulation toward Advanced Lithium-Sulfur Full Batteries. <i>Small</i> , 2021 , 17, e2103744	11	3
25	Highly reversible and safe lithium metal batteries enabled by Non-flammable All-fluorinated carbonate electrolyte conjugated with 3D flexible MXene-based lithium anode. <i>Chemical Engineering Journal</i> , 2022 , 440, 135818	14.7	3
24	General Strategy for Integrated SnO/Metal Oxides as Biactive Lithium-Ion Battery Anodes with Ultralong Cycling Life. <i>ACS Omega</i> , 2017 , 2, 6415-6423	3.9	2
23	Scalable Synthesis of Nano-Sized Bi for Separator Modifying in 5V-Class Lithium Metal Batteries and Potassium Ion Batteries Anodes <i>Small</i> , 2022 , 18, e2104264	11	2
22	Self-healing and ultrastable anode based on room temperature liquid metal reinforced two-dimensional siloxene for high-performance lithium-ion batteries. <i>Applied Materials Today</i> , 2022 , 26, 101300	6.6	2
21	N-Doped graphitic ladder-structured carbon nanotubes as a superior sulfur host for lithium ulfur batteries. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 3969-3979	6.8	2
20	Green and facile fabrication of nanoporous silicon@carbon from commercial alloy with high graphitization degree for high-energy lithium-ion batteries. <i>Sustainable Materials and Technologies</i> , 2021 , 27, e00238	5.3	2
19	Rocking Chair Batteries: Recent Advances and Perspectives of Zn-Metal Free R ocking-Chair Type Zn-Ion Batteries (Adv. Energy Mater. 5/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170023	21.8	2
18	Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes. <i>Nano Research</i> ,1	10	2
17	Nanoporous Si@Carbon: Porosity- and Graphitization-Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium-Metal Anode (Adv. Funct. Mater. 9/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070058	15.6	1
16	Apatite-Based Microcarriers for Bone Tissue Engineering. <i>Key Engineering Materials</i> , 2012 , 529-530, 34-3	39 .4	1
15	Lithiophilic perovskite-CaTiO3 engineered separator for dendrite-suppressing 5 V-class lithium metal batteries with commercial carbonate-based electrolyte. <i>Applied Surface Science</i> , 2022 , 583, 15243	86 ^{.7}	1
14	Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes. <i>Journal of Materials Science and Technology</i> , 2022 , 115, 156-165	9.1	1
13	Feasible Catalytic-Insoluble Strategy Enabled by Sulfurized Polyacrylonitrile with Built Electrocatalysts for Ultrastable Lithium-Sulfur Batteries. <i>ACS Applied Materials & Description</i> (1988) 100 (9.5	1

LIST OF PUBLICATIONS

12	lithium metal anode in commercial carbonate-based electrolyte with high voltage cobalt-free LiNio.5Mn1.5O4 cathode. <i>Journal of Power Sources</i> , 2022 , 520, 230901	8.9	1
11	Highly reversible lithium metal-organic battery enabled by a freestanding MXene interlayer. Journal of Power Sources, 2022 , 521, 230963	8.9	1
10	Metal-organic frameworks and their derivatives in stable Zn metal anodes for aqueous Zn-ion batteries 2021 ,		1
9	Control of the structure and composition of nitrogen-doped carbon nanofoams derived from CO2 foamed polyacrylonitrile as anodes for high-performance potassium-ion batteries. <i>Electrochimica Acta</i> , 2021 , 388, 138630	6.7	1
8	Supercritical CO2 foaming strategy to fabricate nitrogen/oxygen co-doped bi-continuous nanoporous carbon scaffold for high-performance potassium-ion storage. <i>Journal of Power Sources</i> , 2021 , 507, 230275	8.9	1
7	LiF-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries. <i>Chemical Engineering Journal</i> , 2022 , 442, 136243	14.7	1
6	Ultrastable and High-Rate 2D Siloxene Anode Enabled by Covalent Organic Framework Engineering for Advanced Lithium-Ion Batteries <i>Small Methods</i> , 2022 , e2200306	12.8	1
5	Biofunctional hollow EMnO microspheres by a one-pot collagen-templated biomineralization route and their applications in lithium batteries <i>RSC Advances</i> , 2021 , 11, 37040-37048	3.7	O
4	In Situ-Formed Dual-Conductive Protecting Layer for Dendrite-Free Li Metal Anodes in All-Solid-State Batteries. <i>Energy Technology</i> , 2021 , 9, 2100087	3.5	O
3	Unexpected increase of the compliance rate of transfusion requisition form after the COVID-19 outbreak. <i>Transfusion Clinique Et Biologique</i> , 2021 , 28, 94-95	1.9	
2	Green and Facile Synthesis of Nanosized Polythiophene as an Organic Anode for High-Performance Potassium-Ion Battery 2021 , 159-166		
1	Application of quality control circle to improve conformity rate of time limits of infusion. Transfusion Clinique Et Biologique, 2021, 28, 312-313	1.9	