List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5116568/publications.pdf Version: 2024-02-01

		7551	15218
252	19,214	77	126
papers	citations	h-index	g-index
253	253	253	14208
all docs	docs citations	times ranked	citing authors

LINKUL FENC

#	Article	IF	CITATIONS
1	Selfâ€&upported Formation of Needlelike Co ₃ O ₄ Nanotubes and Their Application as Lithiumâ€Ion Battery Electrodes. Advanced Materials, 2008, 20, 258-262.	11.1	978
2	Enhanced Capacity and Rate Capability of Nitrogen/Oxygen Dualâ€Doped Hard Carbon in Capacitive Potassiumâ€Ion Storage. Advanced Materials, 2018, 30, 1700104.	11.1	650
3	Flexible and Free-Standing Ti ₃ C ₂ T _{<i>x</i>} MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries. ACS Nano, 2019, 13, 11676-11685.	7.3	420
4	Facile Fabrication of Nitrogenâ€Doped Porous Carbon as Superior Anode Material for Potassiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1802386.	10.2	393
5	Oneâ€Step Construction of N,Pâ€Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage. Advanced Materials, 2018, 30, e1802310.	11.1	376
6	Embedding MnO@Mn ₃ O ₄ Nanoparticles in an Nâ€Dopedâ€Carbon Framework Derived from Mnâ€Organic Clusters for Efficient Lithium Storage. Advanced Materials, 2018, 30, 1704244.	11.1	374
7	Enhancing the cycling stability of Na-ion batteries by bonding SnS ₂ ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy and Environmental Science, 2016, 9, 1430-1438.	15.6	312
8	Hollow nanospheres of mesoporous Co 9 S 8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy, 2015, 12, 528-537.	8.2	303
9	Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte. Journal of Power Sources, 2018, 378, 66-72.	4.0	299
10	Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano, 2021, 15, 9244-9272.	7.3	272
11	Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries. ACS Nano, 2018, 12, 4993-5002.	7.3	269
12	MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. Journal of Power Sources, 2010, 195, 4410-4413.	4.0	262
13	Hierarchical Porous Nanosheets Constructed by Grapheneâ€Coated, Interconnected TiO ₂ Nanoparticles for Ultrafast Sodium Storage. Advanced Materials, 2018, 30, 1705788.	11.1	247
14	Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 10004-10011.	4.0	241
15	The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy and Environmental Science, 2016, 9, 1229-1236.	15.6	230
16	Emerging Catalysts to Promote Kinetics of Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2002893.	10.2	228
17	Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries. ACS Nano, 2018, 12, 12932-12940.	7.3	223
18	Vacuum distillation derived 3D porous current collector for stable lithium–metal batteries. Nano Energy, 2018, 47, 503-511.	8.2	221

#	Article	IF	CITATIONS
19	Boosting Zinc-Ion Storage Capability by Effectively Suppressing Vanadium Dissolution Based on Robust Layered Barium Vanadate. Nano Letters, 2020, 20, 2899-2906.	4.5	208
20	Hierarchical Carbon Nanotubes with a Thick Microporous Wall and Inner Channel as Efficient Scaffolds for Lithium–Sulfur Batteries. Advanced Functional Materials, 2016, 26, 1571-1579.	7.8	177
21	Ultrasmall SnS ₂ nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10719-10726.	5.2	177
22	Sole Chemical Confinement of Polysulfides on Nonporous Nitrogen/Oxygen Dualâ€Doped Carbon at the Kilogram Scale for Lithium–Sulfur Batteries. Advanced Functional Materials, 2017, 27, 1604265.	7.8	173
23	A controlled red phosphorus@Ni–P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1222-1233.	15.6	170
24	Rational Design of Sulfur-Doped Three-Dimensional Ti ₃ C ₂ Tii> _{<i>x</i>} MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries. ACS Nano, 2021, 15, 15259-15273.	7.3	167
25	A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9716-9725.	5.2	162
26	Stable Aqueous Anodeâ€Free Zinc Batteries Enabled by Interfacial Engineering. Advanced Functional Materials, 2021, 31, 2101886.	7.8	162
27	Porosity―and Graphitization ontrolled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithiumâ€Metal Anode. Advanced Functional Materials, 2020, 30, 1908721.	7.8	159
28	Oxygen Defects Engineering of VO ₂ · <i>x</i> H ₂ O Nanosheets via In Situ Polypyrrole Polymerization for Efficient Aqueous Zinc Ion Storage. Advanced Functional Materials, 2021, 31, 2103070.	7.8	153
29	Nitrogenâ€Doped Grapheneâ€Supported Mixed Transitionâ€Metal Oxide Porous Particles to Confine Polysulfides for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800595.	10.2	151
30	Sulfiphilic Few‣ayered MoSe ₂ Nanoflakes Decorated rGO as a Highly Efficient Sulfur Host for Lithiumâ€&ulfur Batteries. Advanced Energy Materials, 2019, 9, 1901896.	10.2	147
31	Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Materials, 2021, 41, 343-353.	9.5	145
32	High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification. Carbon, 2018, 130, 487-494.	5.4	144
33	Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application. Chemical Engineering Journal, 2018, 347, 12-18.	6.6	143
34	Scalable and Physical Synthesis of 2D Silicon from Bulk Layered Alloy for Lithium-Ion Batteries and Lithium Metal Batteries. ACS Nano, 2019, 13, 13690-13701.	7.3	143
35	Recent Advances of Emerging 2D MXene for Stable and Dendriteâ€Free Metal Anodes. Advanced Functional Materials, 2020, 30, 2004613.	7.8	140
36	Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries. ACS Nano, 2021, 15, 11828-11842.	7.3	140

#	Article	IF	CITATIONS
37	Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries. Nanoscale, 2015, 7, 17211-17230.	2.8	139
38	A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chemical Engineering Journal, 2018, 345, 536-544.	6.6	136
39	Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2021, 60, 15563-15571.	7.2	136
40	Rationally Incorporated MoS ₂ /SnS ₂ Nanoparticles on Graphene Sheets for Lithium-Ion and Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 27697-27706.	4.0	134
41	Morphology- and Porosity-Tunable Synthesis of 3D Nanoporous SiGe Alloy as a High-Performance Lithium-Ion Battery Anode. ACS Nano, 2018, 12, 2900-2908.	7.3	133
42	Nanoporous germanium as high-capacity lithium-ion battery anode. Nano Energy, 2015, 13, 651-657.	8.2	131
43	Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2018, 10, 18610-18618.	4.0	123
44	Unusual Formation of CoO@C "Dandelions―Derived from 2D Kagóme MOLs for Efficient Lithium Storage. Advanced Energy Materials, 2018, 8, 1703242.	10.2	122
45	Layered (NH ₄) ₂ V ₆ 0 ₁₆ ·1.5H ₂ O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19130-19139.	5.2	121
46	Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. Nano Energy, 2013, 2, 498-504.	8.2	120
47	Nanoporous Red Phosphorus on Reduced Graphene Oxide as Superior Anode for Sodium-Ion Batteries. ACS Nano, 2018, 12, 7380-7387.	7.3	120
48	Large-scale synthesis of Co ₂ V ₂ O ₇ hexagonal microplatelets under ambient conditions for highly reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 16728-16736.	5.2	116
49	Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chemical Engineering Journal, 2020, 400, 125843.	6.6	115
50	Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@polypyrrole@graphene film. Chemical Engineering Journal, 2018, 334, 184-190.	6.6	113
51	<i>In Situ</i> Electrochemically Activated Vanadium Oxide Cathode for Advanced Aqueous Zn-Ion Batteries. Nano Letters, 2022, 22, 119-127.	4.5	113
52	Hierarchical Microcables Constructed by CoP@CâŠ,Carbon Framework Intertwined with Carbon Nanotubes for Efficient Lithium Storage. Advanced Energy Materials, 2020, 10, 1902913.	10.2	112
53	Recent Advances and Perspectives of Znâ€Metal Free "Rockingâ€Chairâ€â€Type Znâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2002529.	10.2	111
54	Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors. Carbon, 2018, 138, 264-270.	5.4	110

#	Article	IF	CITATIONS
55	Stable all-solid-state potassium battery operating at room temperature with a composite polymer electrolyte and a sustainable organic cathode. Journal of Power Sources, 2018, 399, 294-298.	4.0	109
56	Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020, 78, 105344.	8.2	108
57	Two-Dimensional Silicon/Carbon from Commercial Alloy and CO ₂ for Lithium Storage and Flexible Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Lithium–Metal Batteries. ACS Nano, 2020, 14, 17574-17588.	7.3	108
58	Design of Robust, Lithiophilic, and Flexible Inorganicâ€Polymer Protective Layer by Separator Engineering Enables Dendriteâ€Free Lithium Metal Batteries with LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Cathode. Small, 2021, 17, e2007717.	5.2	108
59	Micron-Sized Nanoporous Vanadium Pentoxide Arrays for High-Performance Gel Zinc-Ion Batteries and Potassium Batteries. Chemistry of Materials, 2020, 32, 4054-4064.	3.2	105
60	Effects of Fermented Soybean Meal on Digestive Enzyme Activities and Intestinal Morphology in Broilers. Poultry Science, 2007, 86, 1149-1154.	1.5	104
61	Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10098-10104.	5.2	104
62	Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles. Journal of Alloys and Compounds, 2018, 748, 854-860.	2.8	103
63	Highly Reversible Zn Metal Anodes Enabled by Freestanding, Lightweight, and Zincophilic MXene/Nanoporous Oxide Heterostructure Engineered Separator for Flexible Zn-MnO ₂ Batteries. ACS Nano, 2022, 16, 6755-6770.	7.3	103
64	Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries. Journal of Power Sources, 2015, 287, 177-183.	4.0	102
65	Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Materials, 2020, 26, 223-233.	9.5	100
66	Ultrafine TiO ₂ Confined in Porous-Nitrogen-Doped Carbon from Metal–Organic Frameworks for High-Performance Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 12400-12407.	4.0	99
67	Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Research, 2021, 14, 3576-3584.	5.8	95
68	Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Materials, 2020, 30, 206-227.	9.5	95
69	A titanium-based metal–organic framework as an ultralong cycle-life anode for PIBs. Chemical Communications, 2017, 53, 8360-8363.	2.2	94
70	Uniform Li deposition by regulating the initial nucleation barrier <i>via</i> a simple liquid-metal coating for a dendrite-free Li–metal anode. Journal of Materials Chemistry A, 2019, 7, 18861-18870.	5.2	93
71	Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage. Nano Today, 2021, 37, 101094.	6.2	93
72	Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage. Advanced Materials, 2022, 34, e2202673.	11.1	93

#	Article	IF	CITATIONS
73	Enhanced rate performance and cycling stability of a CoCO3–polypyrrole composite for lithium ion battery anodes. Journal of Materials Chemistry A, 2013, 1, 11200.	5.2	91
74	Effect of Fermented Soybean Meal on Intestinal Morphology and Digestive Enzyme Activities in Weaned Piglets. Digestive Diseases and Sciences, 2007, 52, 1845-1850.	1.1	88
75	Li7P3S11/poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries. Journal of Power Sources, 2018, 400, 212-217.	4.0	88
76	Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium–selenium batteries. Journal of Materials Chemistry A, 2015, 3, 4539-4546.	5.2	87
77	Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. Energy Storage Materials, 2021, 34, 12-21.	9.5	85
78	Metal–Organic Framework Derived Iron Sulfide–Carbon Core–Shell Nanorods as a Conversion-Type Battery Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 5039-5048.	3.2	82
79	3D Co ₃ O ₄ and CoO@C wall arrays: morphology control, formation mechanism, and lithium-storage properties. Journal of Materials Chemistry A, 2014, 2, 11597.	5.2	81
80	Roomâ€Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binderâ€Free Anode for Nextâ€Generation Lithiumâ€Ion Batteries. Small, 2019, 15, e1903214.	5.2	79
81	Mesoporous quasi-single-crystalline NiCo ₂ O ₄ superlattice nanoribbons with optimizable lithium storage properties. Journal of Materials Chemistry A, 2015, 3, 10336-10344.	5.2	78
82	Quantumâ€Matter Bi/TiO ₂ Heterostructure Embedded in Nâ€Doped Porous Carbon Nanosheets for Enhanced Sodium Storage. Small Structures, 2021, 2, 2000085.	6.9	77
83	One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries. ACS Nano, 2022, 16, 4560-4577.	7.3	75
84	Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion. Energy Storage Materials, 2020, 32, 115-150.	9.5	74
85	Walnut-inspired microsized porous silicon/graphene core–shell composites for high-performance lithium-ion battery anodes. Nano Research, 2017, 10, 4274-4283.	5.8	72
86	Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chemical Engineering Journal, 2022, 431, 134277.	6.6	72
87	Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. ACS Nano, 2021, 15, 12741-12767.	7.3	71
88	Hierarchical Octahedra Constructed by Cu ₂ S/MoS ₂ âŠ,Carbon Framework with Enhanced Sodium Storage. Small, 2020, 16, e2000952.	5.2	70
89	Triple-walled SnO ₂ @N-doped carbon@SnO ₂ nanotubes as an advanced anode material for lithium and sodium storage. Journal of Materials Chemistry A, 2015, 3, 23194-23200.	5.2	68
90	Sandwich Structures Constructed by ZnSeâŠ,N @MoSe ₂ Located in Graphene for Efficient Sodium Storage. Advanced Energy Materials, 2020, 10, 2002298.	10.2	67

#	Article	IF	CITATIONS
91	Controllable Phosphorylation Strategy for Free-Standing Phosphorus/Nitrogen Cofunctionalized Porous Carbon Monoliths as High-Performance Potassium Ion Battery Anodes. ACS Nano, 2020, 14, 14057-14069.	7.3	67
92	Recent advance of biomass-derived carbon as anode for sustainable potassium ion battery. Chemical Engineering Journal, 2021, 405, 126897.	6.6	66
93	Multifunctional CoO@C metasequoia arrays for enhanced lithium storage. Nano Energy, 2014, 7, 52-62.	8.2	65
94	Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge. Journal of Power Sources, 2018, 386, 77-84.	4.0	65
95	High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 1574-1581.	5.2	65
96	Nonflammable electrolyte for safer non-aqueous sodium batteries. Journal of Materials Chemistry A, 2015, 3, 14539-14544.	5.2	64
97	Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life. Journal of Power Sources, 2019, 413, 302-309.	4.0	63
98	Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Research, 2020, 13, 2673-2682.	5.8	62
99	Functional regeneration of tendons using scaffolds with physical anisotropy engineered via microarchitectural manipulation. Science Advances, 2018, 4, eaat4537.	4.7	61
100	Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zincâ€ion batteries. SusMat, 2022, 2, 114-141.	7.8	60
101	A Highâ€Rate and Ultrastable Aqueous Zincâ€lon Battery with a Novel MgV ₂ O ₆ ·1.7H ₂ O Nanobelt Cathode. Small, 2021, 17, e2100318.	5.2	58
102	Nonflammable Fluorinated Carbonate Electrolyte with High Salt-to-Solvent Ratios Enables Stable Silicon-Based Anode for Next-Generation Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23229-23235.	4.0	57
103	Safe all-solid-state potassium batteries with three dimentional, flexible and binder-free metal sulfide array electrode. Journal of Power Sources, 2019, 433, 226697.	4.0	57
104	ZnO/CoO and ZnCo2O4 Hierarchical Bipyramid Nanoframes: Morphology Control, Formation Mechanism, and Their Lithium Storage Properties. ACS Applied Materials & Interfaces, 2015, 7, 22848-22857.	4.0	56
105	Crumpled Ti3C2Tx (MXene) nanosheet encapsulated LiMn2O4 for high performance lithium-ion batteries. Electrochimica Acta, 2019, 309, 362-370.	2.6	56
106	WSe ₂ Flakelets on Nâ€Doped Graphene for Accelerating Polysulfide Redox and Regulating Li Plating. Angewandte Chemie - International Edition, 2022, 61, .	7.2	56
107	One‣tep In Situ Formation of Nâ€doped Carbon Nanosheet 3D Porous Networks/TiO ₂ Hybrids with Ultrafast Sodium Storage. Advanced Energy Materials, 2019, 9, 1803070.	10.2	55
108	Ether-based nonflammable electrolyte for room temperature sodium battery. Journal of Power Sources, 2015, 284, 222-226.	4.0	54

#	Article	IF	CITATIONS
109	Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel. Chemosphere, 2018, 191, 389-399.	4.2	54
110	Artificial Solid Electrolyte Interphase Coating to Reduce Lithium Trapping in Silicon Anode for High Performance Lithiumâ€lon Batteries. Advanced Materials Interfaces, 2019, 6, 1901187.	1.9	54
111	Sandwichâ€Like FeCl ₃ @C as Highâ€Performance Anode Materials for Potassiumâ€Ion Batteries. Advanced Materials Interfaces, 2018, 5, 1800606.	1.9	53
112	Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries. Electrochimica Acta, 2013, 114, 688-692.	2.6	52
113	Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Materials, 2021, 38, 157-189.	9.5	52
114	Carboxylated carbon nanotube anchored MnCO3 nanocomposites as anode materials for advanced lithium-ion batteries. Materials Letters, 2013, 111, 165-168.	1.3	51
115	Stable and Safe Lithium Metal Batteries with Ni-Rich Cathodes Enabled by a High Efficiency Flame Retardant Additive. Journal of the Electrochemical Society, 2019, 166, A2736-A2740.	1.3	51
116	Facile synthesis ofÂN,O-codoped hard carbon on the kilogram scale for fast capacitive sodium storage. Journal of Materials Chemistry A, 2018, 6, 16465-16474.	5.2	50
117	Dualâ€Functional NbN Ultrafine Nanocrystals Enabling Kinetically Boosted Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	49
118	Metal–organic framework-derived graphene@nitrogen doped carbon@ultrafine TiO ₂ nanocomposites as high rate and long-life anodes for sodium ion batteries. Chemical Communications, 2016, 52, 12810-12812.	2.2	48
119	Green and tunable fabrication of graphene-like N-doped carbon on a 3D metal substrate as a binder-free anode for high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 21966-21975.	5.2	48
120	Non-Flammable Phosphate Electrolyte with High Salt-to-Solvent Ratios for Safe Potassium-Ion Battery. Journal of the Electrochemical Society, 2019, 166, A1217-A1222.	1.3	48
121	Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal. Journal of Energy Chemistry, 2020, 41, 73-78.	7.1	48
122	One-pot solvothermal synthesis of graphene wrapped rice-like ferrous carbonate nanoparticles as anode materials for high energy lithium-ion batteries. Nanoscale, 2015, 7, 232-239.	2.8	46
123	Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. Journal of Power Sources, 2018, 392, 116-122.	4.0	46
124	MXene/Organics Heterostructures Enable Ultrastable and High-Rate Lithium/Sodium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 2979-2988.	4.0	46
125	Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries. Energy Storage Materials, 2022, 48, 447-457.	9.5	46
126	Stable and dendrite-free lithium metal anodes enabled by carbon paper incorporated with ultrafine lithiophilic TiO2 derived from MXene and carbon dioxide. Chemical Engineering Journal, 2021, 406, 126836.	6.6	45

#	Article	IF	CITATIONS
127	Nanostructured V2O5 arrays on metal substrate as binder free cathode materials for sodium-ion batteries. Electrochimica Acta, 2015, 182, 769-774.	2.6	44
128	Lithium metal protection enabled by in-situ olefin polymerization for high-performance secondary lithium sulfur batteries. Journal of Power Sources, 2017, 363, 193-198.	4.0	43
129	In Situ Synthesis of a Lithiophilic Ag-Nanoparticles-Decorated 3D Porous Carbon Framework toward Dendrite-Free Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 15219-15227.	3.2	43
130	Vacancy and architecture engineering of porous FeP nanorods for achieving superior Li+ storage. Chemical Engineering Journal, 2022, 429, 132249.	6.6	43
131	NASICON-Structured LiGe ₂ (PO ₄) ₃ with Improved Cyclability for High-Performance Lithium Batteries. Journal of Physical Chemistry C, 2009, 113, 20514-20520.	1.5	42
132	Building stable solid electrolyte interphases (SEI) for microsized silicon anode and 5V-class cathode with salt engineered nonflammable phosphate-based lithium-ion battery electrolyte. Applied Surface Science, 2021, 553, 149566.	3.1	42
133	Constructing ultrafine lithiophilic layer on MXene paper by sputtering for stable and flexible 3D lithium metal anode. Chemical Engineering Journal, 2021, 421, 129685.	6.6	42
134	Graphene encapsulated Fe ₃ O ₄ nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material. Materials Chemistry Frontiers, 2017, 1, 1185-1193.	3.2	41
135	Scalable construction of SiO/wrinkled MXene composite by a simple electrostatic self-assembly strategy as anode for high-energy lithium-ion batteries. Chinese Chemical Letters, 2020, 31, 980-983.	4.8	41
136	Ni ₁₂ P ₅ nanoparticles bound on graphene sheets for advanced lithium–sulfur batteries. Nanoscale, 2020, 12, 10760-10770.	2.8	40
137	Reduced graphene oxide decorated Pt activated SnO2 nanoparticles for enhancing methanol sensing performance. Journal of Alloys and Compounds, 2018, 762, 8-15.	2.8	39
138	One-Step Construction of MoS _{0.74} Se _{1.26} /N-Doped Carbon Flower-like Hierarchical Microspheres with Enhanced Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 44342-44351.	4.0	39
139	MXenes and their derivatives for advanced aqueous rechargeable batteries. Materials Today, 2022, 52, 225-249.	8.3	39
140	Tea polyphenols inactivate Cronobacter sakazakii isolated from powdered infant formula. Journal of Dairy Science, 2016, 99, 1019-1028.	1.4	38
141	Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries. Journal of Colloid and Interface Science, 2019, 554, 674-681.	5.0	38
142	Integrated nanocomposite of LiMn2O4/graphene/carbon nanotubes with pseudocapacitive properties as superior cathode for aqueous hybrid capacitors. Journal of Electroanalytical Chemistry, 2019, 842, 74-81.	1.9	38
143	MXenes for advanced separator in rechargeable batteries. Materials Today, 2022, 57, 146-179.	8.3	38
144	In situ study of topography, phase and volume changes of titanium dioxide anode in all-solid-state thin film lithium-ion battery by biased scanning probe microscopy. Journal of Power Sources, 2012, 197, 224-230.	4.0	37

#	Article	IF	CITATIONS
145	Hollow nanoporous red phosphorus as an advanced anode for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12992-12998.	5.2	36
146	Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium—sulfur batteries. Nano Research, 2022, 15, 1424-1432.	5.8	35
147	Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Materials, 2022, 50, 473-494.	9.5	35
148	A novel bifunctional additive for safer lithium ion batteries. Journal of Power Sources, 2013, 243, 29-32.	4.0	34
149	Synthesis of nanosized cadmium oxide (CdO) as a novel high capacity anode material for Lithium-ion batteries: influence of carbon nanotubes decoration and binder choice. Electrochimica Acta, 2014, 129, 107-112.	2.6	34
150	Strongly Coupled W ₂ C Atomic Nanoclusters on N/P odoped Graphene for Kinetically Enhanced Sulfur Host. Advanced Materials Interfaces, 2019, 6, 1802088.	1.9	34
151	TiO ₂ â€Based Heterostructures with Different Mechanism: A General Synergistic Effect toward Highâ€Performance Sodium Storage. Small, 2020, 16, e2004054.	5.2	33
152	Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries. Journal of Power Sources, 2019, 416, 141-147.	4.0	31
153	Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries. Chemical Engineering Journal, 2022, 430, 132748.	6.6	31
154	LiF-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries. Chemical Engineering Journal, 2022, 442, 136243.	6.6	31
155	In-situ embedding CoTe catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Research, 2022, 15, 8972-8982.	5.8	31
156	The effect of enrichment media on the stimulation of native ureolytic bacteria in calcareous sand. International Journal of Environmental Science and Technology, 2020, 17, 1795-1808.	1.8	30
157	Lithium storage capability of CuGeO3 nanorods. Materials Research Bulletin, 2012, 47, 1693-1696.	2.7	29
158	Carbon coated copper sulfides nanosheets synthesized via directly sulfurizing Metal-Organic Frameworks for lithium batteries. Materials Letters, 2016, 181, 340-344.	1.3	29
159	High-Safety and High-Voltage Lithium Metal Batteries Enabled by a Nonflammable Ether-Based Electrolyte with Phosphazene as a Cosolvent. ACS Applied Materials & Interfaces, 2021, 13, 10141-10148.	4.0	29
160	Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2022, 428, 131040.	6.6	29
161	Sodiophilic Mg ²⁺ â€Decorated Ti ₃ C ₂ MXene for Dendriteâ€Free Sodium Metal Batteries with Carbonateâ€Based Electrolytes. Small, 2022, 18, e2107637.	5.2	29
162	A heart-coronary arteries structure of carbon nanofibers/graphene/silicon composite anode for high performance lithium ion batteries. Scientific Reports, 2017, 7, 9642.	1.6	28

#	Article	IF	CITATIONS
163	Layer-by-Layer Stacked (NH ₄) ₂ V ₄ O ₉ ·0.5H ₂ O Nanosheet Assemblies with Intercalation Pseudocapacitance for High Rate Aqueous Zinc Ion Storage. ACS Applied Energy Materials, 2020, 3, 5343-5352.	2.5	28
164	Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances. Materials Research Bulletin, 2015, 70, 573-578.	2.7	27
165	N-doped carbon nanotubes formed in a wide range of temperature and ramping rate for fast sodium storage. Journal of Energy Chemistry, 2020, 49, 136-146.	7.1	27
166	Electroless deposition of Ni ₃ P–Ni arrays on 3-D nickel foam as a high performance anode for lithium-ion batteries. RSC Advances, 2015, 5, 60870-60875.	1.7	26
167	New Insights into the Electrochemistry Superiority of Liquid Na–K Alloy in Metal Batteries. Small, 2019, 15, e1804916.	5.2	26
168	Zeroâ€Strain Structure for Efficient Potassium Storage: Nitrogenâ€Enriched Carbon Dualâ€Confinement CoP Composite. Advanced Energy Materials, 2022, 12, 2103341.	10.2	26
169	Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte. Journal of Energy Chemistry, 2022, 69, 221-230.	7.1	26
170	Influences of Copper/Zinc-Loaded Montmorillonite on Growth Performance, Mineral Retention, Intestinal Morphology, Mucosa Antioxidant Capacity, and Cytokine Contents in Weaned Piglets. Biological Trace Element Research, 2018, 185, 356-363.	1.9	25
171	Enhanced heterogeneous activation of peroxydisulfate by S, N co-doped graphene via controlling S, N functionalization for the catalytic decolorization of dyes in water. Chemosphere, 2018, 210, 120-128.	4.2	25
172	Metal-organic frameworks and their derivatives in stable Zn metal anodes for aqueous Zn-ion batteries. ChemPhysMater, 2022, 1, 252-263.	1.4	25
173	High-Safety and Dendrite-Free Lithium Metal Batteries Enabled by Building a Stable Interface in a Nonflammable Medium-Concentration Phosphate Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 50869-50877.	4.0	25
174	Rationally Designed Three‣ayered TiO ₂ @amorphous MoS ₃ @Carbon Hierarchical Microspheres for Efficient Potassium Storage. Small, 2022, 18, e2107819.	5.2	24
175	A novel bifunctional additive for 5 V-class, high-voltage lithium ion batteries. RSC Advances, 2016, 6, 7224-7228.	1.7	23
176	Enhancing kinetics of Li-S batteries by graphene-like N,S-codoped biochar fabricated in NaCl non-aqueous ionic liquid. Science China Materials, 2019, 62, 455-464.	3.5	23
177	Cu3P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage. Journal of Energy Chemistry, 2022, 66, 339-347.	7.1	23
178	Highly reversible and safe lithium metal batteries enabled by Non-flammable All-fluorinated carbonate electrolyte conjugated with 3D flexible MXene-based lithium anode. Chemical Engineering Journal, 2022, 440, 135818.	6.6	23
179	Hydrothermal growth of Cobalt germanate/reduced graphene oxide nanocomposite as superior anode materials for Lithium-ion batteries. Electrochimica Acta, 2014, 150, 211-217.	2.6	22
180	Improved interfacial floatability of superhydrophobic and compressive S, N co-doped graphene aerogel by electrostatic spraying for highly efficient organic pollutants recovery from water. Applied Surface Science, 2018, 457, 780-788.	3.1	22

#	Article	IF	CITATIONS
181	Systematic Exploration of the Role of a Modified Layer on the Separator in the Electrochemistry of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30306-30313.	4.0	22
182	Bimetal CoNi Active Sites on Mesoporous Carbon Nanosheets to Kinetically Boost Lithiumâ^'Sulfur Batteries. Small, 2021, 17, e2100414.	5.2	22
183	Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes. Nano Research, 2022, 15, 6184-6191.	5.8	22
184	High Current Enabled Stable Lithium Anode for Ultralong Cycling Life of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30793-30800.	4.0	21
185	Boron-doped graphene coated Au@SnO2 for high-performance triethylamine gas detection. Materials Chemistry and Physics, 2020, 239, 121961.	2.0	21
186	High Voltage, Flexible and Low Cost Allâ€5olidâ€5tate Lithium Metal Batteries with a Wide Working Temperature Range. ChemistrySelect, 2020, 5, 1214-1219.	0.7	21
187	Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium–Sulfur Batteries. Angewandte Chemie, 2021, 133, 15691-15699.	1.6	21
188	Biphenyl as overcharge protection additive for nonaqueous sodium batteries. RSC Advances, 2015, 5, 96649-96652.	1.7	20
189	Hydrothermal Synthesis of ZnWO ₄ Hierarchical Hexangular Microstars for Enhanced Lithiumâ€ S torage Properties. European Journal of Inorganic Chemistry, 2017, 2017, 734-740.	1.0	20
190	Enhanced Cycling Performance of Li–O ₂ Battery by Using a Li ₃ PO ₄ -Protected Lithium Anode in DMSO-Based Electrolyte. ACS Applied Energy Materials, 2018, 1, 5511-5517.	2.5	20
191	Green and facile synthesis of nanosized polythiophene as an organic anode for high-performance potassium-ion battery. Functional Materials Letters, 2018, 11, 1840003.	0.7	20
192	Green and facile synthesis of porous ZnCO3 as a novel anode material for advanced lithium-ion batteries. Materials Letters, 2014, 118, 5-7.	1.3	19
193	Enhancing the safety and electrochemical performance of ether based lithium sulfur batteries by introducing an efficient flame retarding additive. RSC Advances, 2016, 6, 53560-53565.	1.7	19
194	Electrochemical Insights, Developing Strategies, and Perspectives toward Advanced Potassium–Sulfur Batteries. Small, 2020, 16, e2003386.	5.2	19
195	Lithium dendrite suppression by facile interfacial barium engineering for stable 5ÂV-class lithium metal batteries with carbonate-based electrolyte. Chemical Engineering Journal, 2021, 414, 128928.	6.6	19
196	Scalable Synthesis of Nano‧ized Bi for Separator Modifying in 5V lass Lithium Metal Batteries and Potassium Ion Batteries Anodes. Small, 2022, 18, e2104264.	5.2	19
197	Design and Fabrication of an Allâ€Solidâ€State Thinâ€Film Liâ€Ion Microbattery with Amorphous TiO ₂ as the Anode. Energy Technology, 2014, 2, 397-400.	1.8	18
198	MnO ₂ nanotubes with a water soluble binder as high performance sodium storage materials. RSC Advances, 2016, 6, 103579-103584.	1.7	18

#	Article	IF	CITATIONS
199	Li7P3S11 solid electrolyte coating silicon for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 276, 325-332.	2.6	18
200	Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes. Journal of Materials Science and Technology, 2022, 115, 156-165.	5.6	18
201	Ultrastable and Highâ€Rate 2D Siloxene Anode Enabled by Covalent Organic Framework Engineering for Advanced Lithiumâ€lon Batteries. Small Methods, 2022, 6, e2200306.	4.6	18
202	Effects of Dietary Copper (II) Sulfate and Copper Proteinate on Performance and Blood Indexes of Copper Status in Growing Pigs. Biological Trace Element Research, 2007, 120, 171-178.	1.9	17
203	ELECTROCHEMICAL PROPERTY OF LiMn₂O₄ IN OVER-DISCHARGED CONDITIONS. Functional Materials Letters, 2012, 05, 1250028.	0.7	17
204	General formation of Mn-based transition metal oxide twin-microspheres with enhanced lithium storage properties. RSC Advances, 2015, 5, 26863-26871.	1.7	17
205	Mental-organic framework derived CuO hollow spheres as high performance anodes for sodium ion battery. Materials Technology, 2016, 31, 497-500.	1.5	17
206	Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries. Nano Research, 2023, 16, 458-465.	5.8	17
207	CdCO 3 /Carbon nanotube nanocomposites as anode materials for advanced lithium-ion batteries. Materials Letters, 2014, 114, 115-118.	1.3	16
208	One-Pot Solvothermal Synthesis of ZnO@α-Co(OH) ₂ Core–Shell Hierarchical Microspheres with Superior Lithium Storage Properties. Journal of Physical Chemistry C, 2016, 120, 2984-2992.	1.5	16
209	Self-templated biomass-derived nitrogen-doped porous carbons as high-performance anodes for sodium ion batteries. Materials Technology, 2017, 32, 592-597.	1.5	16
210	Recent development and prospect of potassium-ion batteries with high energy and high safety for post-lithium batteries. Functional Materials Letters, 2019, 12, 1930002.	0.7	16
211	In situ synthesis of cadmium germanates (Cd2Ge2O6)/reduced graphene oxide nanocomposites as novel high capacity anode materials for advanced lithium-ion batteries. Materials Letters, 2014, 122, 327-330.	1.3	15
212	A novel Lithium/Sodium hybrid aqueous electrolyte for hybrid supercapacitors based on LiFePO ₄ and activated carbon. Functional Materials Letters, 2016, 09, 1642008.	0.7	15
213	N-Doped graphitic ladder-structured carbon nanotubes as a superior sulfur host for lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2020, 7, 3969-3979.	3.0	15
214	Controlled synthesis of copper reinforced nanoporous silicon microsphere with boosted electrochemical performance. Journal of Power Sources, 2020, 455, 227967.	4.0	15
215	Highâ€Surfaceâ€Area Nitrogen/Phosphorus Dualâ€Doped Hierarchical Porous Carbon Derived from Biochar for Sulfur Holder. ChemistrySelect, 2018, 3, 10175-10181.	0.7	14
216	Novel Method of Fabricating Free-Standing and Nitrogen-Doped 3D Hierarchically Porous Carbon Monoliths as Anodes for High-Performance Sodium-Ion Batteries by Supercritical CO ₂ Foaming. ACS Applied Materials & Interfaces, 2019, 11, 9125-9135.	4.0	14

#	Article	IF	CITATIONS
217	Improving the corrosion resistance of micro-arc oxidation coated Mg–Zn–Ca alloy. RSC Advances, 2020, 10, 8244-8254.	1.7	14
218	Flexible, freestanding and lithiophilic Indium/MXene heterostructure enabling dendrite-free lithium metal anode in commercial carbonate-based electrolyte with high voltage cobalt-free LiNi0.5Mn1.5O4 cathode. Journal of Power Sources, 2022, 520, 230901.	4.0	14
219	Facile hydrothermal growth of VO2 nanowire, nanorod and nanosheet arrays as binder free cathode materials for sodium batteries. RSC Advances, 2016, 6, 14314-14320.	1.7	13
220	Facile preparation of fullerene nanorods for high-performance lithium-sulfur batteries. Materials Letters, 2018, 228, 175-178.	1.3	13
221	Self-supporting soft carbon fibers as binder-free and flexible anodes for high-performance sodium-ion batteries. Materials Technology, 2018, 33, 810-814.	1.5	12
222	Scalable and controlled synthesis of 2D nanoporous Co ₃ O ₄ from bulk alloy for potassium ion batteries. Materials Technology, 2020, 35, 594-599.	1.5	12
223	In Situâ€Formed Dualâ€Conductive Protecting Layer for Dendriteâ€Free Li Metal Anodes in Allâ€Solidâ€State Batteries. Energy Technology, 2021, 9, 2100087.	1.8	12
224	Dualâ€Functional MgO Nanocrystals Satisfying Both Polysulfides and Li Regulation toward Advanced Lithiumâ^'Sulfur Full Batteries. Small, 2021, 17, e2103744.	5.2	12
225	Self-healing and ultrastable anode based on room temperature liquid metal reinforced two-dimensional siloxene for high-performance lithium-ion batteries. Applied Materials Today, 2022, 26, 101300.	2.3	12
226	High-Performance Stable Potassium–Sulfur Batteries Enabled by Free-Standing CNT Film-Based Composite Cathodes. Journal of Electronic Materials, 2021, 50, 3037-3042.	1.0	11
227	A facile nitrogen-doped carbon encapsulation of CoFe2O4 nanocrystalline for enhanced performance of lithium ion battery anodes. Journal of Solid State Electrochemistry, 2014, 18, 19-27.	1.2	10
228	Low temperature synthesis of lead germanate (PbGeO3)/polypyrrole (PPy) nanocomposites and their lithium storage performance. Materials Research Bulletin, 2014, 57, 238-242.	2.7	10
229	Green and facile fabrication of nanoporous silicon@carbon from commercial alloy with high graphitization degree for high-energy lithium-ion batteries. Sustainable Materials and Technologies, 2021, 27, e00238.	1.7	10
230	Feasible Catalytic-Insoluble Strategy Enabled by Sulfurized Polyacrylonitrile with <i>In Situ</i> Built Electrocatalysts for Ultrastable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 50936-50947.	4.0	10
231	Carbon budgets of two typical polyculture pond systems in coastal China and their potential roles in the global carbon cycle. Aquaculture Environment Interactions, 2020, 12, 105-115.	0.7	9
232	WSe ₂ Flakelets on Nâ€Đoped Graphene for Accelerating Polysulfide Redox and Regulating Li Plating. Angewandte Chemie, 2022, 134, .	1.6	9
233	Lithiophilic perovskite-CaTiO3 engineered separator for dendrite-suppressing 5ÂV-class lithium metal batteries with commercial carbonate-based electrolyte. Applied Surface Science, 2022, 583, 152430.	3.1	8
234	Enhancing the electrode performance of Co ₃ O ₄ through Co ₃ O ₄ @a-TiO ₂ core–shell microcubes with controllable pore size. RSC Advances, 2015, 5, 40899-40906.	1.7	7

#	Article	IF	CITATIONS
235	Highly reversible lithium metal-organic battery enabled by a freestanding MXene interlayer. Journal of Power Sources, 2022, 521, 230963.	4.0	7
236	Optimizing the Supercapacitive Performance and Cyclability of Ni(OH) 2 by Combining with CuO Concomitant with Mutual Doping. ChemElectroChem, 2019, 6, 4831-4841.	1.7	6
237	Supercritical CO2 foaming strategy to fabricate nitrogen/oxygen co-doped bi-continuous nanoporous carbon scaffold for high-performance potassium-ion storage. Journal of Power Sources, 2021, 507, 230275.	4.0	6
238	Systematic Study of Alkali Cations Intercalated Titanium Dioxide Effect on Sodium and Lithium Storage. Small, 2020, 16, 2001391.	5.2	5
239	Boosting Na + Storage Ability of Bimetallic Mo x W 1â^' x Se 2 with Expanded Interlayers. Chemistry - A European Journal, 2020, 26, 9580-9588.	1.7	5
240	Activation of mu-opioid receptors in thalamic nucleus submedius depresses bee venom–evoked spinal c-Fos expression and flinching behavior. Neuroscience, 2009, 161, 554-560.	1.1	4
241	General Strategy for Integrated SnO ₂ /Metal Oxides as Biactive Lithium-Ion Battery Anodes with Ultralong Cycling Life. ACS Omega, 2017, 2, 6415-6423.	1.6	4
242	Porous lithium cobalt oxide fabricated from metal–organic frameworks as a high-rate cathode for lithium-ion batteries. RSC Advances, 2020, 10, 31889-31893.	1.7	4
243	Control of the structure and composition of nitrogen-doped carbon nanofoams derived from CO2 foamed polyacrylonitrile as anodes for high-performance potassium-ion batteries. Electrochimica Acta, 2021, 388, 138630.	2.6	4
244	Rocking Chair Batteries: Recent Advances and Perspectives of Znâ€Metal Free "Rockingâ€Chairâ€â€Type Znâ Batteries (Adv. Energy Mater. 5/2021). Advanced Energy Materials, 2021, 11, 2170023.	€lon 10.2	3
245	Nanostructuring of biomaterials and reducing implant related infections via incorporation of silver and copper as antimicrobial elements: an overview. Materials Technology, 2022, 37, 867-879.	1.5	3
246	Apatite-Based Microcarriers for Bone Tissue Engineering. Key Engineering Materials, 0, 529-530, 34-39.	0.4	2
247	Nanoporous Si@Carbon: Porosity―and Graphitization ontrolled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithiumâ€Metal Anode (Adv.) Tj ETQq1	1 0.88431	l4 ஜBT /Ove
248	Biofunctional hollow γ-MnO ₂ microspheres by a one-pot collagen-templated biomineralization route and their applications in lithium batteries. RSC Advances, 2021, 11, 37040-37048.	1.7	2
249	Unexpected increase of the compliance rate of transfusion requisition form after the COVID-19 outbreak. Transfusion Clinique Et Biologique, 2021, 28, 94-95.	0.2	0
250	Green and Facile Synthesis of Nanosized Polythiophene as an Organic Anode for High-Performance Potassium-Ion Battery. , 2021, , 159-166.		0
251	Application of quality control circle to improve conformity rate of time limits of infusion. Transfusion Clinique Et Biologique, 2021, 28, 312-313.	0.2	0
252	Leaf-like copper oxide mesocrystals by collagen-assisted biomineralization show attractive biofunctional and electrochemical properties. Materials Advances, 2022, 3, 245-253.	2.6	0