Alexander M Spokoyny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5116464/publications.pdf Version: 2024-02-01

		87723	56606
87	7,115	38	83
papers	citations	h-index	g-index
117 all docs	117 docs citations	117 times ranked	7552 citing authors

#	Article	IF	CITATIONS
1	Abiotic Main Group Pharmacophore Renders a New Class of Antimicrobial Agents. ACS Central Science, 2022, 8, 309-311.	5.3	2
2	An Organometallic Gold(III) Reagent for ¹⁸ F Labeling of Unprotected Peptides and Sugars in Aqueous Media. Organic Letters, 2022, 24, 5132-5136.	2.4	9
3	Sterically Invariant Carborane-Based Ligands for the Morphological and Electronic Control of Metal–Organic Chalcogenolate Assemblies. Chemistry of Materials, 2022, 34, 6933-6943.	3.2	11
4	Dynamic Nuclear Polarization Using 3D Aromatic Boron Cluster Radicals. Journal of Physical Chemistry Letters, 2021, 12, 13-18.	2.1	4
5	Narratives of undergraduate research, mentorship, and teaching at UCLA. Pure and Applied Chemistry, 2021, 93, 207-221.	0.9	1
6	Gold(III) Aryl Complexes as Reagents for Constructing Hybrid Peptide-Based Assemblies via Cysteine <i>S</i> -Arylation. Inorganic Chemistry, 2021, 60, 5054-5062.	1.9	21
7	Imparting Scientific Literacy through an Online Materials Chemistry General Education Course. Journal of Chemical Education, 2021, 98, 1594-1601.	1.1	5
8	An Organometallic Strategy for Cysteine Borylation. Journal of the American Chemical Society, 2021, 143, 8661-8668.	6.6	27
9	Electronic Structure of Superoxidized Radical Cationic Dodecaborate-Based Clusters. Journal of Physical Chemistry A, 2021, 125, 6141-6150.	1.1	2
10	Mr. Inorganic Chemistry: M. Frederick Hawthorne (August 24, 1928–July 8, 2021). Inorganic Chemistry, 2021, 60, 12621-12624.	1.9	1
11	Ex Vivo and In Vivo Evaluation of Dodecaborate-Based Clusters Encapsulated in Ferumoxytol Nanoparticles. Langmuir, 2021, 37, 14500-14508.	1.6	4
12	Icosahedral <i>m</i> -Carboranes Containing Exopolyhedral B–Se and B–Te Bonds. Inorganic Chemistry, 2021, 60, 19165-19174.	1.9	2
13	An Organometallic Strategy for Assembling Atomically Precise Hybrid Nanomaterials. Journal of the American Chemical Society, 2020, 142, 327-334.	6.6	55
14	Expanding the Scope of Palladium-Catalyzed B–N Cross-Coupling Chemistry in Carboranes. Organometallics, 2020, 39, 4380-4386.	1.1	18
15	Carborane Guests for Cucurbit[7]uril Facilitate Strong Binding and On-Demand Removal. Journal of the American Chemical Society, 2020, 142, 20513-20518.	6.6	28
16	Enhancing cycling stability of tungsten oxide supercapacitor electrodes <i>via</i> a boron cluster-based molecular cross-linking approach. Journal of Materials Chemistry A, 2020, 8, 18015-18023.	5.2	13
17	A Super-Oxidized Radical Cationic Icosahedral Boron Cluster. Journal of the American Chemical Society, 2020, 142, 12948-12953.	6.6	16
18	Oxidative Generation of Boron-Centered Radicals in Carboranes. Journal of the American Chemical Society, 2020, 142, 4586-4591.	6.6	42

#	Article	IF	CITATIONS
19	A molecular boron cluster-based chromophore with dual emission. Dalton Transactions, 2020, 49, 16245-16251.	1.6	15
20	Tunable Dopants with Intrinsic Counterion Separation Reveal the Effects of Electron Affinity on Dopant Intercalation and Free Carrier Production in Sequentially Doped Conjugated Polymer Films. Advanced Functional Materials, 2020, 30, 2001800.	7.8	53
21	Off-Cycle Processes in Pd-Catalyzed Cross-Coupling of Carboranes. Organic Process Research and Development, 2019, 23, 1638-1645.	1.3	33
22	Multivalent Cluster Nanomolecules for Inhibiting Protein–Protein Interactions. Bioconjugate Chemistry, 2019, 30, 2594-2603.	1.8	10
23	Sterically Unprotected Nucleophilic Boron Cluster Reagents. CheM, 2019, 5, 2461-2469.	5.8	20
24	Metal-catalyzed cross-coupling chemistry with polyhedral boranes. Chemical Communications, 2019, 55, 430-442.	2.2	99
25	Dodecaboraneâ€Based Dopants Designed to Shield Anion Electrostatics Lead to Increased Carrier Mobility in a Doped Conjugated Polymer. Advanced Materials, 2019, 31, e1805647.	11.1	90
26	Synthesis of 9-borafluorene analogues featuring a three-dimensional 1,1′-bis(<i>o</i> -carborane) backbone. Chemical Communications, 2019, 55, 2892-2895.	2.2	44
27	Photooxidative Generation of Dodecaborate-Based Weakly Coordinating Anions. Inorganic Chemistry, 2019, 58, 10516-10526.	1.9	7
28	Perfunctionalized Dodecaborate Clusters as Stable Metal-Free Active Materials for Charge Storage. ACS Applied Energy Materials, 2019, 2, 4907-4913.	2.5	19
29	Cross-linked porous polyurethane materials featuring dodecaborate clusters as inorganic polyol equivalents. Chemical Communications, 2019, 55, 8852-8855.	2.2	11
30	Cross-linking dots on metal oxides. NPG Asia Materials, 2019, 11, .	3.8	12
31	"Mr. Boronâ€; an <i>Inorganic Chemistry</i> Icon, Turns 90. Inorganic Chemistry, 2019, 58, 5369-5374.	1.9	5
32	Carborane RAFT agents as tunable and functional molecular probes for polymer materials. Polymer Chemistry, 2019, 10, 1660-1667.	1.9	14
33	A highly-selective chloride microelectrode based on a mercuracarborand anion carrier. Scientific Reports, 2019, 9, 18860.	1.6	6
34	Arylation Chemistry for Bioconjugation. Angewandte Chemie - International Edition, 2019, 58, 4810-4839.	7.2	169
35	Arylierungschemie für die Biokonjugation. Angewandte Chemie, 2019, 131, 4860-4892.	1.6	39
36	Improved synthesis of icosahedral carboranes containing exopolyhedral B C and C C bonds. Tetrahedron, 2019, 75, 187-191.	1.0	30

#	Article	IF	CITATIONS
37	Synthesis and Applications of Perfunctionalized Boron Clusters. Inorganic Chemistry, 2018, 57, 2333-2350.	1.9	121
38	Increased Electrical Conductivity in a Mesoporous Metal–Organic Framework Featuring Metallacarboranes Guests. Journal of the American Chemical Society, 2018, 140, 3871-3875.	6.6	158
39	A molecular cross-linking approach for hybrid metal oxides. Nature Materials, 2018, 17, 341-348.	13.3	90
40	Reversible Silver Electrodeposition from Boron Cluster Ionic Liquid (BCIL) Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 6825-6830.	4.0	23
41	Buchwald–Hartwig amination using Pd(<scp>i</scp>) dimer precatalysts supported by biaryl phosphine ligands. Dalton Transactions, 2018, 47, 3684-3688.	1.6	22
42	Fine-Tuning Electronic Properties of Luminescent Pt(II) Complexes via Vertex-Differentiated Coordination of Sterically Invariant Carborane-Based Ligands. Organometallics, 2018, 37, 3122-3131.	1.1	35
43	Organometallic Gold(III) Reagents for Cysteine Arylation. Journal of the American Chemical Society, 2018, 140, 7065-7069.	6.6	148
44	Sonochemical Synthesis of Small Boron Oxide Nanoparticles. Inorganic Chemistry, 2018, 57, 8037-8041.	1.9	25
45	Tuning the electrochemical potential of perfunctionalized dodecaborate clusters through vertex differentiation. Chemical Communications, 2018, 54, 5867-5870.	2.2	13
46	Metal-Free Peralkylation of the <i>closo</i> -Hexaborate Anion. Organometallics, 2017, 36, 1204-1210.	1.1	15
47	Magnesium Reagents Featuring a 1,1′â€Bis(<i>o</i> arborane) Ligand Platform. European Journal of Inorganic Chemistry, 2017, 2017, 4411-4416.	1.0	20
48	Cage-Walking: Vertex Differentiation by Palladium-Catalyzed Isomerization of B(9)-Bromo- <i>meta</i> -Carborane. Journal of the American Chemical Society, 2017, 139, 7729-7732.	6.6	97
49	Atomically precise organomimetic cluster nanomolecules assembled via perfluoroaryl-thiol SNAr chemistry. Nature Chemistry, 2017, 9, 333-340.	6.6	201
50	Cover Feature: Magnesium Reagents Featuring a 1,1′-Bis(o -carborane) Ligand Platform (Eur. J. Inorg.) Tj ETQo	0 0 9 rgB ⁻	T /Qverlock 10
51	Work Function Control of Germanium through Carborane-Carboxylic Acid Surface Passivation. ACS Applied Materials & Interfaces, 2017, 9, 34592-34596.	4.0	33
52	The Long-Lasting Blues: A New Record for Phosphorescent Organic Light-Emitting Diodes. CheM, 2017, 3, 385-387.	5.8	8
53	B–N, B–O, and B–CN Bond Formation via Palladium-Catalyzed Cross-Coupling of B-Bromo-Carboranes. Journal of the American Chemical Society, 2016, 138, 9081-9084.	6.6	102
54	Rapid synthesis of redox-active dodecaborane B ₁₂ (OR) ₁₂ clusters under	3.0	44

ambient conditions. Inorganic Chemistry Frontiers, 2016, 3, 711-717.

Alexander M Spokoyny

#	Article	IF	CITATIONS
55	Visible-Light-Induced Olefin Activation Using 3D Aromatic Boron-Rich Cluster Photooxidants. Journal of the American Chemical Society, 2016, 138, 6952-6955.	6.6	95
56	Surface Dipole Control of Liquid Crystal Alignment. Journal of the American Chemical Society, 2016, 138, 5957-5967.	6.6	94
57	Luminescent metal complexes featuring photophysically innocent boron cluster ligands. Chemical Science, 2016, 7, 5132-5138.	3.7	141
58	Blue Phosphorescent Zwitterionic Iridium(III) Complexes Featuring Weakly Coordinating <i>nido</i> -Carborane-Based Ligands. Journal of the American Chemical Society, 2016, 138, 15758-15765.	6.6	148
59	An Inorganic Twist in Nanomaterials: Making an Atomically Precise Double Helix. ACS Central Science, 2016, 2, 685-686.	5.3	9
60	Forging Unsupported Metal–Boryl Bonds with Icosahedral Carboranes. Chemistry - A European Journal, 2016, 22, 8466-8470.	1.7	51
61	Defect-Tolerant Aligned Dipoles within Two-Dimensional Plastic Lattices. ACS Nano, 2015, 9, 4734-4742.	7.3	30
62	Organometallic palladium reagents for cysteine bioconjugation. Nature, 2015, 526, 687-691.	13.7	377
63	Rapid Flowâ€Based Peptide Synthesis. ChemBioChem, 2014, 15, 713-720.	1.3	136
64	Enzyme-Catalyzed Macrocyclization of Long Unprotected Peptides. Organic Letters, 2014, 16, 3652-3655.	2.4	39
65	Convergent diversity-oriented side-chain macrocyclization scan for unprotected polypeptides. Organic and Biomolecular Chemistry, 2014, 12, 566-573.	1.5	73
66	Boron-Dipyrromethene-Functionalized Hemilabile Ligands as "Turn-On―Fluorescent Probes for Coordination Changes in Weak-Link Approach Complexes. Inorganic Chemistry, 2013, 52, 5484-5492.	1.9	28
67	A Perfluoroaryl-Cysteine S _N Ar Chemistry Approach to Unprotected Peptide Stapling. Journal of the American Chemical Society, 2013, 135, 5946-5949.	6.6	389
68	New ligand platforms featuring boron-rich clusters as organomimetic substituents. Pure and Applied Chemistry, 2013, 85, 903-919.	0.9	135
69	Enzymatic "Click―Ligation: Selective Cysteine Modification in Polypeptides Enabled by Promiscuous Glutathione Sâ€Transferase. Angewandte Chemie - International Edition, 2013, 52, 14001-14005.	7.2	57
70	Extremely Electron-Rich, Boron-Functionalized, Icosahedral Carborane-Based Phosphinoboranes. Organometallics, 2012, 31, 8478-8481.	1.1	100
71	Chelating Effect as a Driving Force for the Selective Formation of Heteroligated Pt(II) Complexes with Bidentate Phosphino-Chalcoether Ligands. Inorganic Chemistry, 2011, 50, 1411-1419.	1.9	32
72	Plasticity of the Nickel(II) Coordination Environment in Complexes with Hemilabile Phosphino Thioether Ligands. Journal of the American Chemical Society, 2011, 133, 3023-3033.	6.6	14

#	Article	IF	CITATIONS
73	A coordination chemistry dichotomy for icosahedral carborane-based ligands. Nature Chemistry, 2011, 3, 590-596.	6.6	294
74	SiO2 Aerogel Templated, Porous TiO2 Photoanodes for Enhanced Performance in Dye-Sensitized Solar Cells Containing a Ni(III)/(IV) Bis(dicarbollide) Shuttle. Journal of Physical Chemistry C, 2011, 115, 11257-11264.	1.5	38
75	A "click-based―porous organic polymer from tetrahedral building blocks. Journal of Materials Chemistry, 2011, 21, 1700.	6.7	156
76	Electronic Tuning of Nickelâ€Based Bis(dicarbollide) Redox Shuttles in Dyeâ€5ensitized Solar Cells. Angewandte Chemie - International Edition, 2010, 49, 5339-5343.	7.2	121
77	Porosity tuning of carborane-based metal–organic frameworks (MOFs) via coordination chemistry and ligand design. Inorganica Chimica Acta, 2010, 364, 266-271.	1.2	64
78	Selective Formation of Heteroligated Pt(II) Complexes with Bidentate Phosphine-Thioether (P,S) and Phosphine-Selenoether (P,Se) Ligands via the Halide-Induced Ligand Rearrangement Reaction. Inorganic Chemistry, 2010, 49, 1577-1586.	1.9	28
79	Ni(III)/(IV) Bis(dicarbollide) as a Fast, Noncorrosive Redox Shuttle for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 4580-4582.	6.6	190
80	Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. Chemical Communications, 2010, 46, 1056.	2.2	144
81	Separation of gas mixtures using Co(ii) carborane-based porous coordination polymers. Chemical Communications, 2010, 46, 3478.	2.2	135
82	Gasâ€Sorption Properties of Cobalt(II)–Carboraneâ€Based Coordination Polymers as a Function of Morphology. Small, 2009, 5, 1727-1731.	5.2	132
83	Infinite coordination polymer nano- and microparticle structures. Chemical Society Reviews, 2009, 38, 1218.	18.7	748
84	Carborane-Based Pincers: Synthesis and Structure of SeBSe and SBS Pd(II) Complexes. Journal of the American Chemical Society, 2009, 131, 9482-9483.	6.6	116
85	Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer. Chemistry of Materials, 2009, 21, 3033-3035.	3.2	272
86	Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane. Chemical Communications, 2008, , 4135.	2.2	349
87	Synthesis and Hydrogen Sorption Properties of Carborane Based Metalâ^'Organic Framework Materials. Journal of the American Chemical Society, 2007, 129, 12680-12681.	6.6	269