Huichun Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5116410/huichun-zhang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

76
papers

2,196
citations

h-index

80
ext. papers

2,981
ext. citations

9.7
avg, IF

5.95
L-index

#	Paper	IF	Citations
76	Coupling-promoted oxidative degradation of organic micropollutants by iron oxychloride (FeOCl) with dual active sites. <i>Chemical Engineering Journal Advances</i> , 2022 , 9, 100214	3.6	1
75	A comprehensive kinetic model for phenol oxidation in seven advanced oxidation processes and considering the effects of halides and carbonate <i>Water Research X</i> , 2022 , 14, 100129	8.1	1
74	Investigation of water quality and its spatial distribution in the Kor River basin, Fars province, Iran. <i>Environmental Research</i> , 2022 , 204, 112294	7.9	1
73	Enhanced dewaterability of waste activated sludge by UV assisted ZVI-PDS oxidation <i>Journal of Environmental Sciences</i> , 2022 , 113, 152-164	6.4	1
7 2	Machine Learning-Assisted QSAR Models on Contaminant Reactivity Toward Four Oxidants: Combining Small Data Sets and Knowledge Transfer <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	2
71	Predicting Heavy Metal Adsorption on Soil with Machine Learning and Mapping Global Distribution of Soil Adsorption Capacities. <i>Environmental Science & Environmental Science </i>	10.3	8
70	ab initio study of Mn-based systems for oxidative degradation. <i>Chemosphere</i> , 2021 , 291, 132706	8.4	O
69	System Dynamics-Multiple Objective Optimization Model for Water Resource Management: A Case Study in Jiaxing City, China. <i>Water (Switzerland)</i> , 2021 , 13, 671	3	4
68	Quantitative structure activity relationships (QSARs) and machine learning models for abiotic reduction of organic compounds by an aqueous Fe(II) complex. <i>Water Research</i> , 2021 , 192, 116843	12.5	8
67	Is the traditional alkali extraction method valid in isolating chemically distinct humic acid?. <i>Chemical Engineering Journal Advances</i> , 2021 , 6, 100077	3.6	0
66	Fe(II) Redox Chemistry in the Environment. <i>Chemical Reviews</i> , 2021 , 121, 8161-8233	68.1	37
65	Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 1	5.8	4
64	An improved weighted index for the assessment of heavy metal pollution in soils in Zhejiang, China. <i>Environmental Research</i> , 2021 , 192, 110246	7.9	20
63	Shedding light on B lack BoxImachine learning models for predicting the reactivity of HO radicals toward organic compounds. <i>Chemical Engineering Journal</i> , 2021 , 405, 126627	14.7	17
62	Ecological risk potential assessment of heavy metal contaminated soils in Ophiolitic formations. <i>Environmental Research</i> , 2021 , 192, 110305	7.9	11
61	Molecular image-convolutional neural network (CNN) assisted QSAR models for predicting contaminant reactivity toward OH radicals: Transfer learning, data augmentation and model interpretation. <i>Chemical Engineering Journal</i> , 2021 , 408, 127998	14.7	16
60	Determining and forecasting drought susceptibility in southwestern Iran using multi-criteria decision-making (MCDM) coupled with CA-Markov model. <i>Science of the Total Environment</i> , 2021 , 781, 146703	10.2	8

59	Machine Learning: New Ideas and Tools in Environmental Science and Engineering. <i>Environmental Science & Environmental Science</i>	10.3	26
58	A Novel Machine Learning Model to Predict the Photo-Degradation Performance of Different Photocatalysts on a Variety of Water Contaminants. <i>Catalysts</i> , 2021 , 11, 1107	4	1
57	Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation. <i>Environmental Research</i> , 2021 , 202, 111660	7.9	21
56	Predicting Aqueous Adsorption of Organic Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons, and Resins with Machine Learning. <i>Environmental Science & amp; Technology</i> , 2020 , 54, 7008-7018	10.3	42
55	A generalized predictive model for TiO-Catalyzed photo-degradation rate constants of water contaminants through artificial neural network. <i>Environmental Research</i> , 2020 , 187, 109697	7.9	11
54	Redox reactions of iron and manganese oxides in complex systems. <i>Frontiers of Environmental Science and Engineering</i> , 2020 , 14, 1	5.8	16
53	Roles of oxygen and Mn (IV) oxide in abiotic formation of humic substances by oxidative polymerization of polyphenol and amino acid. <i>Chemical Engineering Journal</i> , 2020 , 393, 124734	14.7	15
52	Highly Efficient Bromide Removal from Shale Gas Produced Water by Unactivated Peroxymonosulfate for Controlling Disinfection Byproduct Formation in Impacted Water Supplies. <i>Environmental Science & Environmental Science & </i>	10.3	6
51	Significant Effect of Evaporation Process on the Reaction of Sulfamethoxazole with Manganese Oxide. <i>Environmental Science & Environmental Science & E</i>	10.3	5
50	Galvanic oxidation processes (GOPs): An effective direct electron transfer approach for organic contaminant oxidation. <i>Science of the Total Environment</i> , 2020 , 743, 140828	10.2	5
49	Surveying Manganese Oxides as Electrode Materials for Harnessing Salinity Gradient Energy. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	7
48	Mn(III)-ligand complexes as a catalyst in ligand-assisted oxidation of substituted phenols by permanganate in aqueous solution. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121401	12.8	10
47	Enhancement of nitrogen and phosphorus removal, sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with composite ferrate solution disintegration. <i>Environmental Research</i> , 2020 , 190, 110006	7.9	1
46	Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves. <i>Frontiers of Environmental Science and Engineering</i> , 2020 , 14, 1	5.8	2
45	Coupling a Feedforward Network (FN) Model to Real Adsorbed Solution Theory (RAST) to Improve Prediction of Bisolute Adsorption on Resins. <i>Environmental Science & Environmental Science & Environment</i>	1 5 394	4
44	Response to Comment on Predicting Aqueous Adsorption of Organic Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons, And Resins with Machine Learning. <i>Environmental Science & Environmental Science & Envi</i>	10.3	
43	A deep neural network combined with molecular fingerprints (DNN-MF) to develop predictive models for hydroxyl radical rate constants of water contaminants. <i>Journal of Hazardous Materials</i> , 2020 , 383, 121141	12.8	32
42	Oxidant or catalyst for oxidation? The role of manganese oxides in the activation of peroxymonosulfate (PMS). Frontiers of Environmental Science and Engineering, 2019, 13, 1	5.8	7

41	Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review. <i>Environment International</i> , 2019 , 133, 105141	12.9	94
40	Dissolution, Adsorption, and Redox Reaction in Ternary Mixtures of Goethite, Aluminum Oxides, and Hydroquinone. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 4371-4379	3.8	4
39	Interactions and Reductive Reactivity in Ternary Mixtures of Fe(II), Goethite, and Phthalic Acid Based on a Combined Experimental and Modeling Approach. <i>Langmuir</i> , 2019 , 35, 8220-8227	4	4
38	Reduction of nitrogen-oxygen containing compounds (NOCs) by surface-associated Fe(II) and comparison with soluble Fe(II) complexes. <i>Chemical Engineering Journal</i> , 2019 , 370, 782-791	14.7	6
37	Effects of Second Metal Oxides on Surface-Mediated Reduction of Contaminants by Fe(II) with Iron Oxide. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 680-687	3.2	6
36	Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions. <i>Chemical Engineering Journal</i> , 2019 , 370, 906-915	14.7	98
35	Direct Electron-Transfer-Based Peroxymonosulfate Activation by Iron-Doped Manganese Oxide (EMnO) and the Development of Galvanic Oxidation Processes (GOPs). <i>Environmental Science & Emp; Technology</i> , 2019 , 53, 12610-12620	10.3	82
34	Evaluating the environmental impact of selected chemical de-icers. <i>Transportation Safety and Environment</i> , 2019 , 1, 220-229	2.6	1
33	New insight into the reactivity of Mn(III) in bisulfite/permanganate for organic compounds oxidation: The catalytic role of bisulfite and oxygen. <i>Water Research</i> , 2019 , 148, 198-207	12.5	17
32	Highly sensitive electrochemical analysis of tunnel structured MnO2 nanoparticle-based sensors on the oxidation of nitrite. <i>Sensors and Actuators B: Chemical</i> , 2019 , 281, 746-750	8.5	33
31	Stability of hydrous ferric oxide nanoparticles encapsulated inside porous matrices: Effect of solution and matrix phase. <i>Chemical Engineering Journal</i> , 2018 , 347, 870-876	14.7	15
30	Reduction of isoxazoles including sulfamethoxazole by aqueous Fellliron complex: Impact of structures. <i>Chemical Engineering Journal</i> , 2018 , 352, 501-509	14.7	6
29	Effect of MnO Phase Structure on the Oxidative Reactivity toward Bisphenol A Degradation. <i>Environmental Science & Environmental Science & Environment</i>	10.3	107
28	Reaction of bisphenol A with synthetic and commercial MnO: spectroscopic and kinetic study. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1046-1055	4.3	4
27	Development of palladium-resin composites for catalytic hydrodechlorination of 4-chlorophenol. <i>Applied Catalysis B: Environmental</i> , 2017 , 205, 576-586	21.8	40
26	Modeling Bisolute Adsorption of Aromatic Compounds Based on Adsorbed Solution Theories. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	3
25	Contamination of Phthalate Esters in Vegetable Agriculture and Human Cumulative Risk Assessment. <i>Pedosphere</i> , 2017 , 27, 439-451	5	50
24	Catalytic reduction of 4-nitrophenol by palladium-resin composites. <i>Applied Catalysis A: General</i> , 2017 , 543, 209-217	5.1	24

(2007-2016)

23	Interactions in Ternary Mixtures of MnO2, Al2O3, and Natural Organic Matter (NOM) and the Impact on MnO2 Oxidative Reactivity. <i>Environmental Science & Environmental Science </i>	10.3	33
22	Experimental and Computational Evidence for the Reduction Mechanisms of Aromatic N-oxides by Aqueous Fe(II)-Tiron Complex. <i>Environmental Science & Environmental Envi</i>	10.3	10
21	Spectroscopic Investigation of Interfacial Interaction of Manganese Oxide with Triclosan, Aniline, and Phenol. <i>Environmental Science & Environmental </i>	10.3	42
20	Effects of NOM on oxidative reactivity of manganese dioxide in binary oxide mixtures with goethite or hematite. <i>Langmuir</i> , 2015 , 31, 2790-9	4	20
19	Reconstruction of adsorption potential in Polanyi-based models and application to various adsorbents. <i>Environmental Science & Environmental &</i>	10.3	10
18	Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins. <i>Environmental Science & amp; Technology,</i> 2014 , 48, 7494-502	10.3	20
17	Sorption mechanism and predictive models for removal of cationic organic contaminants by cation exchange resins. <i>Environmental Science & Environmental & Envi</i>	10.3	10
16	Complexation facilitated reduction of aromatic N-oxides by aqueous Fe(II)-tiron complex: reaction kinetics and mechanisms. <i>Environmental Science & Environmental Science & En</i>	10.3	11
15	Identifying indicators of reactivity for chemical reductants in sediments. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	23
14	Interaction Mechanisms and Predictive Model for the Sorption of Aromatic Compounds onto Nonionic Resins. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 17707-17715	3.8	23
13	Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2012 , 46, 2764-71	10.3	28
12	A modified Polanyi-based model for mechanistic understanding of adsorption of phenolic compounds onto polymeric adsorbents. <i>Environmental Science & Environmental Science & E</i>	10.3	22
11	The Use of Chemical Probes for the Characterization of the Predominant Abiotic Reductants in Anaerobic Sediments. <i>ACS Symposium Series</i> , 2011 , 539-557	0.4	1
10	Elucidating the role of electron shuttles in reductive transformations in anaerobic sediments. <i>Environmental Science & Environmental </i>	10.3	37
9	Kinetic modeling of oxidation of antibacterial agents by manganese oxide. <i>Environmental Science & Environmental Science</i>	10.3	152
8	Evaluation of the performance of flow-through anodic fenton treatment in amide compound degradation. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 4073-9	5.7	11
7	Degradation of methyl tertiary-butyl ether (MTBE) by anodic Fenton treatment. <i>Journal of Hazardous Materials</i> , 2007 , 144, 29-40	12.8	32
6	Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. <i>Chemosphere</i> , 2007 , 66, 1502-12	8.4	128

5	Reaction mechanism and kinetic modeling of DEET degradation by flow-through anodic fenton treatment (FAFT). <i>Environmental Science & Environmental Sci</i>	10.3	34
4	Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide. <i>Environmental Science & Environmental Science & Environm</i>	10.3	244
3	Reactivity and transformation of antibacterial N-oxides in the presence of manganese oxide. <i>Environmental Science & Environmental Science & Environme</i>	10.3	70
2	Oxidative transformation of triclosan and chlorophene by manganese oxides. <i>Environmental Science & Environmental Science & En</i>	10.3	290
1	Hydrolysis kinetics of phenylsulfonyl-cycloalkane carboxylates. <i>Chemosphere</i> , 1995 , 31, 3425-3431	8.4	1