
Assocâ€P.rof Jiro Kondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5115883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Ag ^I â€DNA Rod Comprising a Oneâ€Dimensional Array of 11 Silver Ions within a Double Helical Structure. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
2	Effect of cytosine–Ag ⁺ –cytosine base pairing on the redox potential of the Ag ⁺ /Ag couple and the chemical reduction of Ag ⁺ to Ag by tetrathiafulvalene. Dalton Transactions, 2021, 50, 7633-7639.	1.6	5
3	DNA Manufacturing Using Non-Visit Fully Automated Data Collection. Nihon Kessho Gakkaishi, 2021, 63, 224-226.	0.0	0
4	Chemical reduction of Ag ⁺ to Ag employing organic electron donors: evaluation of the effect of Ag ⁺ -mediated cytosine–cytosine base pairing on the aggregation of Ag nanoparticles. Dalton Transactions, 2021, 50, 12208-12214.	1.6	1
5	Structural Bases for the Fitness Cost of the Antibiotic-Resistance and Lethal Mutations at Position 1408 of 16S rRNA. Molecules, 2020, 25, 159.	1.7	3
6	Removal of the A ₁₀ adenosine in a DNA-stabilized Ag ₁₆ nanocluster. RSC Advances, 2020, 10, 23854-23860.	1.7	16
7	Mutation of position 5 as a crystal engineering tool for a NIR-emitting DNA-stabilized Ag ₁₆ nanocluster. CrystEngComm, 2020, 22, 8136-8141.	1.3	18
8	Crystal structure of a NIRâ€Emitting DNAâ€Stabilized Ag 16 Nanocluster. Angewandte Chemie, 2019, 131, 17313-17317.	1.6	11
9	Crystal structure of a NIRâ€Emitting DNAâ€6tabilized Ag ₁₆ Nanocluster. Angewandte Chemie - International Edition, 2019, 58, 17153-17157.	7.2	87
10	A Novel DNA Helical Wire Containing Hg ^{II} â€Mediated T:T and T:G Pairs. Angewandte Chemie - International Edition, 2019, 58, 16835-16838.	7.2	36
11	A Novel DNA Helical Wire Containing Hg ^{II} â€Mediated T:T and T:G Pairs. Angewandte Chemie, 2019, 131, 16991-16994.	1.6	12
12	Conformational adaptation of UNCG loops upon crowding. Rna, 2019, 25, 1522-1531.	1.6	1
13	Crystal structure of a DNA duplex cross-linked by 6-thioguanine–6-thioguanine disulfides: reversible formation and cleavage catalyzed by Cu(<scp>ii</scp>) ions and glutathione. RSC Advances, 2019, 9, 22859-22862.	1.7	Ο
14	Innenrücktitelbild: Crystal structure of a NIRâ€Emitting DNAâ€Stabilized Ag ₁₆ Nanocluster (Angew. Chem. 48/2019). Angewandte Chemie, 2019, 131, 17643-17643.	1.6	1
15	Structure-Based Design of a Eukaryote-Selective Antiprotozoal Fluorinated Aminoglycoside. ChemMedChem, 2018, 13, 1541-1548.	1.6	3
16	DNA Structural Bio-Nanotechnology. Nihon Kessho Gakkaishi, 2018, 60, 121-128.	0.0	0
17	Crystal structure of a DNA duplex containing four Ag(i) ions in consecutive dinuclear Ag(i)-mediated base pairs: 4-thiothymine–2Ag(i)–4-thiothymine. Chemical Communications, 2017, 53, 11747-11750.	2.2	37
18	Crystal structure of a novel RNA motif that allows for precise positioning of a single metal ion. Journal of Inorganic Biochemistry, 2017, 176, 140-143.	1.5	1

#	Article	IF	CITATIONS
19	A structural basis for the antibiotic resistance conferred by an N1-methylation of A1408 in 16S rRNA. Nucleic Acids Research, 2017, 45, 12529-12535.	6.5	15
20	A metallo-DNA nanowire with uninterrupted one-dimensional silver array. Nature Chemistry, 2017, 9, 956-960.	6.6	186
21	Structural insights into the catalytic reaction trigger and inhibition of <scp>D</scp> -3-hydroxybutyrate dehydrogenase. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 507-515.	0.4	6
22	Effect of microwave radiation on the activity of catalase. decomposition of hydrogen peroxide under microwave and conventional heating. RSC Advances, 2016, 6, 48237-48244.	1.7	20
23	Structure Determination of an Ag ^I â€Mediated Cytosine–Cytosine Base Pair within DNA Duplex in Solution with ¹ H ¹⁵ N/ ¹⁰⁹ Ag NMR Spectroscopy. Chemistry - A European Journal, 2016, 22, 13028-13031.	1.7	63
24	The crystal structure of a 2′,4′-BNA ^{NC} [N–Me]-modified antisense gapmer in complex with the target RNA. Chemical Communications, 2016, 52, 2354-2357.	2.2	3
25	Crystallographic Studies of the Ribosomal A-Site Molecular Switches by Using Model RNA Oligomers. Methods in Molecular Biology, 2016, 1320, 315-327.	0.4	2
26	Highâ€Resolution Crystal Structure of a Silver(I)–RNA Hybrid Duplex Containing Watson–Crickâ€like CSilver(I)C Metalloâ€Base Pairs. Angewandte Chemie - International Edition, 2015, 54, 13323-13326.	7.2	88
27	Structures, physicochemical properties, and applications of T–Hg ^{II} –T, C–Ag ^I –C, and other metallo-base-pairs. Chemical Communications, 2015, 51, 17343-17360.	2.2	136
28	A PNPase Dependent CRISPR System in Listeria. PLoS Genetics, 2014, 10, e1004065.	1.5	76
29	The structure of metallo-DNA with consecutive thymine–HgIl–thymine base pairs explains positive entropy for the metallo base pair formation. Nucleic Acids Research, 2014, 42, 4094-4099.	6.5	106
30	Toxicity Modulation, Resistance Enzyme Evasion, and A-Site X-ray Structure of Broad-Spectrum Antibacterial Neomycin Analogs. ACS Chemical Biology, 2014, 9, 2067-2073.	1.6	21
31	Crystal Structure of Metallo DNA Duplex Containing Consecutive Watson–Crickâ€like T–Hg ^{II} –T Base Pairs. Angewandte Chemie - International Edition, 2014, 53, 2385-2388.	7.2	131
32	Structure of an A-form RNA duplex obtained by degradation of 6S RNA in a crystallization droplet. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 634-639.	0.7	8
33	Crystal Structures of a Bioactive 6′â€Hydroxy Variant of Sisomicin Bound to the Bacterial and Protozoal Ribosomal Decoding Sites. ChemMedChem, 2013, 8, 733-739.	1.6	14
34	Identification of the molecular attributes required for aminoglycoside activity against <i>Leishmania</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13333-13338.	3.3	31
35	Crystal Structure and Specific Binding Mode of Sisomicin to the Bacterial Ribosomal Decoding Site. ACS Medicinal Chemistry Letters, 2012, 3, 741-744.	1.3	20
36	A Structural Basis for the Antibiotic Resistance Conferred by an A1408G Mutation in 16S rRNA and for the Antiprotozoal Activity of Aminoglycosides. Angewandte Chemie - International Edition, 2012, 51, 465-468.	7.2	24

#	Article	IF	CITATIONS
37	Inhibition of Aminoglycosideâ€Deactivating Enzymes APH(3′)â€IIIa and AAC(6′)â€Ii by Amphiphilic Paromor O2′′â€Ether Analogues. ChemMedChem, 2011, 6, 1961-1966.	nycin 1.6	32
38	Inside Cover: Inhibition of Aminoglycoside-Deactivating Enzymes APH(3′)-IIIa and AAC(6′)-Ii by Amphiphilic Paromomycin O2′′-Ether Analogues (ChemMedChem 11/2011). ChemMedChem, 2011, 6, 1942-1942.	1.6	0
39	Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes. Nucleic Acids Research, 2011, 39, 8628-8637.	6.5	71
40	Base pairs and pseudo pairs observed in RNA–ligand complexes. Journal of Molecular Recognition, 2010, 23, 241-252.	1.1	16
41	Structure-based design, synthesis and A-site rRNA co-crystal complexes of novel amphiphilic aminoglycoside antibiotics with new binding modes: A synergistic hydrophobic effect against resistant bacteria. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7097-7101.	1.0	40
42	Patterson-guidedab initioanalysis of structures with helical symmetry. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 1078-1091.	2.5	8
43	The bacterial and mitochondrial ribosomal A-site molecular switches possess different conformational substates. Nucleic Acids Research, 2008, 36, 2654-2666.	6.5	45
44	Crystal structures of DNA:DNA and DNA:RNA duplexes containing 5-(N-aminohexyl)carbamoyl-modified uracils reveal the basis for properties as antigene and antisense molecules. Nucleic Acids Research, 2007, 35, 1969-1977.	6.5	20
45	Structure-Based Design, Synthesis, and A-Site rRNA Cocrystal Complexes of Functionally Novel Aminoglycoside Antibiotics: C2â€~Ââ€~ Ether Analogues of Paromomycin. Journal of Medicinal Chemistry, 2007, 50, 2352-2369.	2.9	54
46	Differential Selectivity of Natural and Synthetic Aminoglycosides towards the Eukaryotic and Prokaryotic Decoding A Sites. ChemBioChem, 2007, 8, 1700-1709.	1.3	56
47	Crystal Structure of the Bacterial Ribosomal Decoding Site Complexed with a Synthetic Doubly Functionalized Paromomycin Derivative: a New Specific Binding Mode to an Aâ€Minor Motif Enhances in vitro Antibacterial Activity. ChemMedChem, 2007, 2, 1631-1638.	1.6	36
48	The structure of a d(gcGAACgc) duplex containing two consecutive bulged A residues in both strands suggests a molecular switch. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 673-681.	2.5	1
49	Crystal structure ofÂtheÂbacterial ribosomal decoding site complexed with amikacin containing theÂγ-amino-α-hydroxybutyryl (haba) group. Biochimie, 2006, 88, 1027-1031.	1.3	68
50	Crystal Structure of theHomo sapiens Cytoplasmic Ribosomal Decoding Site Complexed with Apramycin. Angewandte Chemie - International Edition, 2006, 45, 3310-3314.	7.2	46
51	Two conformational states in the crystal structure of the Homo sapiens cytoplasmic ribosomal decoding A site. Nucleic Acids Research, 2006, 34, 676-685.	6.5	235
52	Crystal Structure of d(gcGXGAgc) with X = C: a Mutation at X is Possible to Occur in a Base-Intercalated Duplex for Multiplex Formation. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 693-704.	0.4	4
53	DNA Octaplex Formation with an I-Motif of Water-Mediated A-Quartets: Reinterpretation of the Crystal Structure of d(GCGAAAGC). Journal of Biochemistry, 2006, 140, 759-762.	0.9	4
54	Crystal structures of a DNA octaplex with I-motif of G-quartets and its splitting into two quadruplexes suggest a folding mechanism of eight tandem repeats. Nucleic Acids Research, 2004, 32, 2541-2549.	6.5	31

#	Article	IF	CITATIONS
55	Structure of d(GCGAAAGC) (hexagonal form): a base-intercalated duplex as a stable structure. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 90-96.	2.5	24
56	Structures of d(GCGAAGC) and d(GCGAAAGC) (tetragonal form): a switching of partners of the sheared G·A pairs to form a functional G·A×A·G crossing. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 422-431.	2.5	13
57	X-ray analyses of d(GCGAXAGC) containing G and T at X: the base-intercalated duplex is still stable even in point mutants at the fifth residue. Journal of Synchrotron Radiation, 2004, 11, 117-120.	1.0	9
58	The octaplex structure of d(GCGAGAGC) with I-motif of guanine quartet, controlled by potassium concentration. Nucleic Acids Symposium Series, 2003, 3, 223-224.	0.3	2
59	The base-intercalated duplexes of d(GCGAXAGC) with mutation at X (X=G, T or C). Nucleic Acids Symposium Series, 2003, 3, 175-176.	0.3	0
60	Crystal structure of d(GCGAAAGCT) containing a parallel-stranded duplex with homo base pairs and an anti-parallel duplex with Watson-Crick base pairs. Nucleic Acids Research, 2002, 30, 5253-5260.	6.5	29
61	X-Ray analysis of d(CGCGAATTXGCG)2 containing a 2′-deoxy-N4-methoxycytosine residue at X: a characteristic pattern of sugar puckers in the crystalline state of the Dickerson–Drew type DNA dodecamers. Biophysical Chemistry, 2002, 95, 69-77.	1.5	9
62	A Novel Ag(I)â€ÐNA Rod Comprising a Oneâ€Ðimensional Array of 11 Silver Ions within a Double Helical Structure. Angewandte Chemie, 0, , .	1.6	0