
## Markus Kleber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5115346/publications.pdf Version: 2024-02-01



MADKIIS KIERED

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Carbon stocks in umbric ferralsols driven by plant productivity and geomorphic processes, not by mineral protection. Earth Surface Processes and Landforms, 2022, 47, 491-508.                                                                                     | 1.2  | 5         |
| 2  | The Important Role of Enzyme Adsorbing Capacity of Soil Minerals in Regulating βâ€Glucosidase Activity.<br>Geophysical Research Letters, 2022, 49, .                                                                                                               | 1.5  | 15        |
| 3  | Response to â€~Stochastic and deterministic interpretation of pool models'. Global Change Biology,<br>2021, 27, e11-e12.                                                                                                                                           | 4.2  | 1         |
| 4  | Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment,<br>2021, 2, 402-421.                                                                                                                                             | 12.2 | 301       |
| 5  | Redox Properties of Pyrogenic Dissolved Organic Matter (pyDOM) from Biomass-Derived Chars.<br>Environmental Science & Technology, 2021, 55, 11434-11444.                                                                                                           | 4.6  | 21        |
| 6  | Response to "Connectivity and pore accessibility in models of soil carbon cycling― Global Change<br>Biology, 2021, 27, e15-e16.                                                                                                                                    | 4.2  | 0         |
| 7  | From pools to flow: The PROMISE framework for new insights on soil carbon cycling in a changing world. Global Change Biology, 2020, 26, 6631-6643.                                                                                                                 | 4.2  | 57        |
| 8  | Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 2020, 13, 529-534.                                                                                                                                                          | 5.4  | 363       |
| 9  | Macronutrient in soils and wheat from long-term agroexperiments reflects variations in residue and fertilizer inputs. Scientific Reports, 2020, 10, 3263.                                                                                                          | 1.6  | 14        |
| 10 | Micronutrient Concentrations in Soil and Wheat Decline by Long-Term Tillage and Winter Wheat–Pea<br>Rotation. Agronomy, 2019, 9, 359.                                                                                                                              | 1.3  | 6         |
| 11 | Reply to "Comment on â€~Humic Substances Extracted by Alkali Are Invalid Proxies for the Dynamics and<br>Functions of Organic Matter in Terrestrial and Aquatic Ecosystems,' by Kleber and Lehmann (2019)―<br>Journal of Environmental Quality, 2019, 48, 790-791. | 1.0  | 0         |
| 12 | Micronutrients in the Soil and Wheat: Impact of 84 Years of Organic or Synthetic Fertilization and<br>Crop Residue Management. Agronomy, 2019, 9, 464.                                                                                                             | 1.3  | 9         |
| 13 | Micronutrients decline under long-term tillage and nitrogen fertilization. Scientific Reports, 2019, 9, 12020.                                                                                                                                                     | 1.6  | 14        |
| 14 | Contribution of different catalytic types of peptidases to soil proteolytic activity. Soil Biology and<br>Biochemistry, 2019, 138, 107578.                                                                                                                         | 4.2  | 9         |
| 15 | Macronutrients in Soil and Wheat as Affected by a Long-Term Tillage and Nitrogen Fertilization in<br>Winter Wheat–Fallow Rotation. Agronomy, 2019, 9, 178.                                                                                                         | 1.3  | 17        |
| 16 | Effect of tillage on macronutrients in soil and wheat of a long-term dryland wheat-pea rotation. Soil<br>and Tillage Research, 2019, 190, 194-201.                                                                                                                 | 2.6  | 16        |
| 17 | Humic Substances Extracted by Alkali Are Invalid Proxies for the Dynamics and Functions of Organic<br>Matter in Terrestrial and Aquatic Ecosystems. Journal of Environmental Quality, 2019, 48, 207-216.                                                           | 1.0  | 124       |
| 18 | Mineral Surfaces as Agents of Environmental Proteolysis: Mechanisms and Controls. Environmental<br>Science & Technology, 2019, 53, 3018-3026.                                                                                                                      | 4.6  | 11        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Carbon Sink Strength of Subsurface Horizons in Brazilian Oxisols. Soil Science Society of America<br>Journal, 2018, 82, 76-86.                                                                                                       | 1.2 | 1         |
| 20 | Carbohydrates protect protein against abiotic fragmentation by soil minerals. Scientific Reports, 2018, 8, 813.                                                                                                                      | 1.6 | 13        |
| 21 | Differential capacity of kaolinite and birnessite to protect surface associated proteins against thermal degradation. Soil Biology and Biochemistry, 2018, 119, 101-109.                                                             | 4.2 | 8         |
| 22 | Quantifying biogeochemical heterogeneity in soil systems. Geoderma, 2018, 324, 89-97.                                                                                                                                                | 2.3 | 23        |
| 23 | The Ability of Soil Pore Network Metrics to Predict Redox Dynamics is Scale Dependent. Soil Systems, 2018, 2, 66.                                                                                                                    | 1.0 | 16        |
| 24 | Demonstration of the rapid incorporation of carbon into protective, mineral-associated organic carbon fractions in an eroded soil from the CarboZALF experimental site. Plant and Soil, 2018, 430, 329-348.                          | 1.8 | 9         |
| 25 | Biopolymers and Macromolecules. Encyclopedia of Earth Sciences Series, 2018, , 148-153.                                                                                                                                              | 0.1 | Ο         |
| 26 | Sorption of Fluorotelomer Sulfonates, Fluorotelomer Sulfonamido Betaines, and a Fluorotelomer<br>Sulfonamido Amine in National Foam Aqueous Film-Forming Foam to Soil. Environmental Science &<br>Technology, 2017, 51, 12394-12404. | 4.6 | 94        |
| 27 | The mechanisms of organic carbon protection and dynamics of <scp>C</scp> â€saturation in<br><scp>O</scp> xisols vary with particleâ€size distribution. European Journal of Soil Science, 2017, 68,<br>726-739.                       | 1.8 | 22        |
| 28 | Can Biochar Covers Reduce Emissions from Manure Lagoons While Capturing Nutrients?. Journal of<br>Environmental Quality, 2017, 46, 659-666.                                                                                          | 1.0 | 19        |
| 29 | Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nature Communications, 2017, 8, 1771.                                                                                                                    | 5.8 | 276       |
| 30 | Biopolymers and Macromolecules. Encyclopedia of Earth Sciences Series, 2017, , 1-5.                                                                                                                                                  | 0.1 | 2         |
| 31 | Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils?.<br>Biogeochemistry, 2016, 127, 157-171.                                                                                              | 1.7 | 236       |
| 32 | Protein–Mineral Interactions: Molecular Dynamics Simulations Capture Importance of Variations in<br>Mineral Surface Composition and Structure. Langmuir, 2016, 32, 6194-6209.                                                        | 1.6 | 31        |
| 33 | Abiotic Protein Fragmentation by Manganese Oxide: Implications for a Mechanism to Supply Soil Biota with Oligopeptides. Environmental Science & amp; Technology, 2016, 50, 3486-3493.                                                | 4.6 | 30        |
| 34 | Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. Advances in Agronomy, 2015, 130, 1-140.                                                                                                     | 2.4 | 801       |
| 35 | Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 2015, 5, 588-595.                                                                                                                            | 8.1 | 694       |
| 36 | Long-term litter decomposition controlled by manganese redox cycling. Proceedings of the National<br>Academy of Sciences of the United States of America, 2015, 112, E5253-60.                                                       | 3.3 | 168       |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The contentious nature of soil organic matter. Nature, 2015, 528, 60-68.                                                                                                                                                                   | 13.7 | 2,418     |
| 38 | Aromaticity and degree of aromatic condensation of char. Organic Geochemistry, 2015, 78, 135-143.                                                                                                                                          | 0.9  | 207       |
| 39 | How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference. Soil Biology and Biochemistry, 2015, 80, 324-340.                                                     | 4.2  | 135       |
| 40 | Long residence times of rapidly decomposable soil organic matter: application of a multi-phase,<br>multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics. Geoscientific Model<br>Development, 2014, 7, 1335-1355. | 1.3  | 97        |
| 41 | Influence of Calcium Carbonate and Charcoal Applications on Organic Matter Storage in Silt‣ized<br>Aggregates Formed during a Microcosm Experiment. Soil Science Society of America Journal, 2014, 78,<br>1624-1631.                       | 1.2  | 29        |
| 42 | Redox Properties of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science &<br>Technology, 2014, 48, 5601-5611.                                                                                                              | 4.6  | 791       |
| 43 | Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 2014, 61, 196-205.                                                                                                                              | 2.9  | 351       |
| 44 | A simple technique to eliminate ethylene emissions from biochar amendment in agriculture. Agronomy<br>for Sustainable Development, 2013, 33, 469-474.                                                                                      | 2.2  | 28        |
| 45 | Advances in the Analysis of Biogeochemical Interfaces. Advances in Agronomy, 2013, , 1-46.                                                                                                                                                 | 2.4  | 69        |
| 46 | Synchrotron-Based Mass Spectrometry to Investigate the Molecular Properties of Mineral–Organic<br>Associations. Analytical Chemistry, 2013, 85, 6100-6106.                                                                                 | 3.2  | 16        |
| 47 | Extraction of fullerenes from environmental matrices as affected by solvent characteristics and analyte concentration. Journal of Separation Science, 2013, 36, 953-958.                                                                   | 1.3  | 1         |
| 48 | Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology. Earth Surface Processes and Landforms, 2013, 38, 908-912.                                                       | 1.2  | 138       |
| 49 | A dual isotope approach to isolate soil carbon pools of different turnover times. Biogeosciences, 2013, 10, 8067-8081.                                                                                                                     | 1.3  | 52        |
| 50 | Application of ultrasound to disperse soil aggregates of high mechanical stability. Journal of Plant<br>Nutrition and Soil Science, 2012, 175, 521-526.                                                                                    | 1.1  | 35        |
| 51 | Annual grassland resource pools and fluxes: sensitivity to precipitation and dry periods on two contrasting soils. Ecosphere, 2012, 3, art70-art70.                                                                                        | 1.0  | 5         |
| 52 | NanoSIMS Study of Organic Matter Associated with Soil Aggregates: Advantages, Limitations, and<br>Combination with STXM. Environmental Science & Technology, 2012, 46, 3943-3949.                                                          | 4.6  | 104       |
| 53 | Transfer of litter-derived N to soil mineral–organic associations: Evidence from decadal 15N tracer<br>experiments. Organic Geochemistry, 2012, 42, 1489-1501.                                                                             | 0.9  | 64        |
| 54 | Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresource<br>Technology, 2012, 118, 120-127.                                                                                                   | 4.8  | 163       |

Markus Kleber

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon. Geochimica Et Cosmochimica Acta, 2012, 95, 213-226.          | 1.6  | 107       |
| 56 | Persistence of soil organic matter in eroding versus depositional landform positions. Journal of<br>Geophysical Research, 2012, 117, .                                                     | 3.3  | 138       |
| 57 | Solvent-Extractable Polycyclic Aromatic Hydrocarbons in Biochar: Influence of Pyrolysis Temperature and Feedstock. Environmental Science & Technology, 2012, 46, 9333-9341.                | 4.6  | 238       |
| 58 | Density fractions versus size separates: does physical fractionation isolate functional soil compartments?. Biogeosciences, 2012, 9, 5181-5197.                                            | 1.3  | 62        |
| 59 | Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478, 49-56.                                                                                                     | 13.7 | 4,243     |
| 60 | Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology, 2011, 17, 1097-1107. | 4.2  | 318       |
| 61 | Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource Technology, 2011, 102, 9897-9903.                                   | 4.8  | 148       |
| 62 | Response to the Opinion paper by Margit von Lützow and Ingrid Kögel-Knabner on 'What is<br>recalcitrant soil organic matter?' by Markus Kleber. Environmental Chemistry, 2010, 7, 336.     | 0.7  | 8         |
| 63 | Advances in Understanding the Molecular Structure of Soil Organic Matter. Advances in Agronomy, 2010, 106, 77-142.                                                                         | 2.4  | 255       |
| 64 | What is recalcitrant soil organic matter?. Environmental Chemistry, 2010, 7, 320.                                                                                                          | 0.7  | 314       |
| 65 | Black carbon in grassland ecosystems of the world. Global Biogeochemical Cycles, 2010, 24, .                                                                                               | 1.9  | 81        |
| 66 | Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental<br>Science & Technology, 2010, 44, 1247-1253.                                                   | 4.6  | 2,267     |
| 67 | Quantitative Analysis of Fullerene Nanomaterials in Environmental Systems: A Critical Review.<br>Environmental Science & Technology, 2009, 43, 6463-6474.                                  | 4.6  | 156       |
| 68 | Molecular-Level Interactions in Soils and Sediments: The Role of Aromatic π-Systems. Environmental<br>Science & Technology, 2009, 43, 3421-3429.                                           | 4.6  | 467       |
| 69 | Variation of Preferred Orientation in Oriented Clay Mounts as a Result of Sample Preparation and Composition. Clays and Clay Minerals, 2009, 57, 686-694.                                  | 0.6  | 33        |
| 70 | Organoâ€mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 2008, 171, 61-82.             | 1.1  | 892       |
| 71 | 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Organic Geochemistry, 2008, 39, 465-477.                                    | 0.9  | 144       |
| 72 | Andosols and soils with andic properties in the German soil taxonomy. Journal of Plant Nutrition and Soil Science, 2007, 170, 317-328.                                                     | 1.1  | 15        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Halloysite versus gibbsite: Silicon cycling as a pedogenetic process in two lowland neotropical rain<br>forest soils of La Selva, Costa Rica. Geoderma, 2007, 138, 1-11.                                    | 2.3 | 98        |
| 74 | A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 2007, 85, 9-24.                        | 1.7 | 898       |
| 75 | Stabilization of Soil Organic Matter: Association with Minerals or Chemical Recalcitrance?.<br>Biogeochemistry, 2006, 77, 25-56.                                                                            | 1.7 | 681       |
| 76 | Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation. Soil<br>Biology and Biochemistry, 2006, 38, 3313-3324.                                                      | 4.2 | 370       |
| 77 | Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. European Journal of Soil Science, 2005, 56, 481-490.                                | 1.8 | 121       |
| 78 | Poorly crystalline minerals protect organic carbon in clay subfractions from acid subsoil horizons.<br>Geoderma, 2005, 128, 106-115.                                                                        | 2.3 | 98        |
| 79 | Soil organic matter stabilization pathways in clay sub-fractions from a time series of fertilizer deprivation. Organic Geochemistry, 2005, 36, 1311-1322.                                                   | 0.9 | 21        |
| 80 | Changes in surface reactivity and organic matter composition of clay subfractions with duration of fertilizer deprivation. European Journal of Soil Science, 2004, 55, 381-391.                             | 1.8 | 38        |
| 81 | First estimates of regional (Allgä, Germany) and global CH4 fluxes from wet colluvial margins of<br>closed depressions in glacial drift areas. Agriculture, Ecosystems and Environment, 2004, 103, 251-257. | 2.5 | 18        |
| 82 | Andosols in Germany—pedogenesis and properties. Catena, 2004, 56, 67-83.                                                                                                                                    | 2.2 | 39        |
| 83 | Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties. Organic Geochemistry, 2004, 35, 269-276.                                                 | 0.9 | 103       |
| 84 | Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry, 2003, 34, 1591-1600.                                 | 0.9 | 362       |
| 85 | Retention of dissolved organic matter by illitic soils and clay fractions: Influence of mineral phase properties. Journal of Plant Nutrition and Soil Science, 2003, 166, 737-741.                          | 1.1 | 37        |
| 86 | Construction and Evaluation of Redox Electrode with Summing Operational Amplifier: Application in<br>Study of Methane Emission. Communications in Soil Science and Plant Analysis, 2003, 34, 481-496.       | 0.6 | 12        |
| 87 | Title is missing!. Soil Science, 2003, 168, 292-306.                                                                                                                                                        | 0.9 | 4         |
| 88 | PREHISTORIC ALTERATION OF SOIL PROPERTIES IN A CENTRAL GERMAN CHERNOZEMIC SOIL. Soil Science, 2003, 168, 292-306.                                                                                           | 0.9 | 42        |
| 89 | An Andosol from Eastern Saxony, Germany. Journal of Plant Nutrition and Soil Science, 2003, 166, 533-542.                                                                                                   | 1.1 | 15        |
| 90 | Preparing a soil carbon inventory of Saxony-Anhalt, Central Germany using GIS and the state soil data<br>base SABO_P. Journal of Plant Nutrition and Soil Science, 2003, 166, 642-648.                      | 1.1 | 9         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Carbon Storage in Coarse and Fine Clay Fractions of Illitic Soils. Soil Science Society of America Journal, 2003, 67, 1732-1739.                                                                         | 1.2 | 51        |
| 92  | Carbon storage in loess derived surface soils from Central Germany: Influence of mineral phase variables. Journal of Plant Nutrition and Soil Science, 2002, 165, 141.                                   | 1.1 | 71        |
| 93  | Das mineralinventar der versuchsfla¨che "statischer dauerdu¨ngungsversuch v120, bad lauchsta¨dt".<br>Archives of Agronomy and Soil Science, 2002, 48, 227-240.                                           | 1.3 | 7         |
| 94  | Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors. Geoderma, 2002, 109, 191-205.                                                         | 2.3 | 175       |
| 95  | Predicting carbon content in illitic clay fractions from surface area, cation exchange capacity and dithionite-extractable iron. European Journal of Soil Science, 2002, 53, 639-644.                    | 1.8 | 56        |
| 96  | Linking soil classification and soil dynamics — pedological and ecological perspectives. Journal of<br>Plant Nutrition and Soil Science, 2002, 165, 517.                                                 | 1.1 | 35        |
| 97  | Formation of mineral N (NH4+, NO3—) during mineralization of organic matter from coal refuse material and municipal sludge. Journal of Plant Nutrition and Soil Science, 2000, 163, 73-80.               | 1.1 | 10        |
| 98  | lon exchange resin–soil mixtures as a tool in net nitrogen mineralisation studies. Soil Biology and<br>Biochemistry, 2000, 32, 1529-1536.                                                                | 4.2 | 24        |
| 99  | Stickstoffumsatz in einer Lößcatena. Journal of Plant Nutrition and Soil Science, 1999, 162, 329-336.                                                                                                    | 1.1 | 1         |
| 100 | Microbial biomass C―and Nâ€dynamics in grassland soils amended with liquid manure. Zeitschrift Fur<br>Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1998, 161, 87-92. | 0.4 | 8         |