
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5115255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-encapsulation of curcumin and β-carotene in Pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocolloids, 2022, 122, 107064.	5.6	70
2	Influence of the particle size of encapsulated chia oil on the oil release and bioaccessibility during <i>in vitro</i> gastrointestinal digestion. Food and Function, 2022, 13, 1370-1379.	2.1	6
3	Impact of albumin corona on mucoadhesion and antimicrobial activity of carvacrol loaded chitosan nano-delivery systems under simulated gastro-intestinal conditions. International Journal of Biological Macromolecules, 2021, 169, 171-182.	3.6	11
4	Protein–saliva interactions: a systematic review. Food and Function, 2021, 12, 3324-3351.	2.1	20
5	Development of β-carotene loaded oil-in-water emulsions using mixed biopolymer–particle–surfactant interfaces. Food and Function, 2021, 12, 3246-3265.	2.1	11
6	Impact of in vitro gastrointestinal digestion on peptide profile and bioactivity of cooked and non-cooked oat protein concentrates. Current Research in Food Science, 2021, 4, 93-104.	2.7	21
7	Stability, Interfacial Structure, and Gastrointestinal Digestion of β-Carotene-Loaded Pickering Emulsions Co-stabilized by Particles, a Biopolymer, and a Surfactant. Journal of Agricultural and Food Chemistry, 2021, 69, 1619-1636.	2.4	42
8	Enhanced stability and controlled gastrointestinal digestion of β-carotene loaded Pickering emulsions with particle–particle complex interfaces. Food and Function, 2021, 12, 10842-10861.	2.1	11
9	Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Advanced Drug Delivery Reviews, 2021, 171, 289-331.	6.6	84
10	6th International Conference on Food Digestion. Food Research International, 2021, 144, 110354.	2.9	0
11	The bile salt content of human bile impacts on simulated intestinal proteolysis of β-lactoglobulin. Food Research International, 2021, 145, 110413.	2.9	5
12	INFOGEST inter-laboratory recommendations for assaying gastric and pancreatic lipases activities prior to in vitro digestion studies. Journal of Functional Foods, 2021, 82, 104497.	1.6	22
13	The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocolloids, 2021, 117, 106696.	5.6	21
14	Improving carvacrol bioaccessibility using core–shell carrier-systems under simulated gastrointestinal digestion. Food Chemistry, 2021, 353, 129505.	4.2	10
15	Zein Colloidal Particles and Cellulose Nanocrystals Synergistic Stabilization of Pickering Emulsions for Delivery of β-Carotene. Journal of Agricultural and Food Chemistry, 2021, 69, 12278-12294.	2.4	36
16	Structural design of zein-cellulose nanocrystals core–shell microparticles for delivery of curcumin. Food Chemistry, 2021, 357, 129849.	4.2	47
17	Potential use of bile salts in lipid self-assembled systems for the delivery of phytochemicals. Current Opinion in Colloid and Interface Science, 2021, 56, 101502.	3.4	1
18	Size and Number of Food Boluses in the Stomach after Eating Different Meals: Magnetic Resonance Imaging Insights in Healthy Humans. Nutrients, 2021, 13, 3626.	1.7	3

#	Article	IF	CITATIONS
19	Importance of Bile Composition for Diagnosis of Biliary Obstructions. Molecules, 2021, 26, 7279.	1.7	4
20	Human gastrointestinal conditions affect <i>in vitro</i> digestibility of peanut and bread proteins. Food and Function, 2020, 11, 6921-6932.	2.1	13
21	Impact of microfluidization and thermal treatment on the structure, stability and in vitro digestion of curcumin loaded zein-propylene glycol alginate complex nanoparticles. Food Research International, 2020, 138, 109817.	2.9	39
22	Simulating human digestion: developing our knowledge to create healthier and more sustainable foods. Food and Function, 2020, 11, 9397-9431.	2.1	94
23	The role of gastric emptying in β-carotene absorption during simulated in vitro digestion. Proceedings of the Nutrition Society, 2020, 79, .	0.4	1
24	Dairy structures and physiological responses: a matter of gastric digestion. Critical Reviews in Food Science and Nutrition, 2020, 60, 3737-3752.	5.4	32
25	The antibiotic vancomycin induces complexation and aggregation of gastrointestinal and submaxillary mucins. Scientific Reports, 2020, 10, 960.	1.6	23
26	Fabrication, characterization and in vitro digestion of food grade complex nanoparticles for co-delivery of resveratrol and coenzyme Q10. Food Hydrocolloids, 2020, 105, 105791.	5.6	63
27	Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption. Food Chemistry, 2020, 319, 126514.	4.2	48
28	A standardised semi-dynamic <i>in vitro</i> digestion method suitable for food – an international consensus. Food and Function, 2020, 11, 1702-1720.	2.1	233
29	Insights and gaps on protein digestion. Current Opinion in Food Science, 2020, 31, 96-101.	4.1	9
30	Engineering oral delivery of hydrophobic bioactives in real-world scenarios. Current Opinion in Colloid and Interface Science, 2020, 48, 40-52.	3.4	35
31	The pattern of peptides released from dairy and egg proteins is highly dependent on the simulated digestion scenario. Food and Function, 2020, 11, 5240-5256.	2.1	21
32	The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa. Nanoscale, 2019, 11, 2991-2998.	2.8	50
33	The relevance of a digestibility evaluation in the allergenicity risk assessment of novel proteins. Opinion of a joint initiative of COST action ImpARAS and COST action INFOGEST. Food and Chemical Toxicology, 2019, 129, 405-423.	1.8	67
34	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	5.5	1,873
35	The Digestive Tract: A Complex System. , 2019, , 11-27.		8
36	The 5th International Conference on Food Digestion. Food Research International, 2019, 118, 1-3.	2.9	0

#	Article	IF	CITATIONS
37	An Engineering Perspective on Human Digestion. , 2019, , 255-273.		1
38	Report on EFSA project OC/EFSA/GMO/2017/01 "In vitro protein digestibility―(Allergestion). EFSA Supporting Publications, 2019, 16, 1765E.	0.3	10
39	Permeability of the small intestinal mucus for physiologically relevant studies: Impact of mucus location and ex vivo treatment. Scientific Reports, 2019, 9, 17516.	1.6	43
40	Which casein in sodium caseinate is most resistant to in vitro digestion? Effect of emulsification and enzymatic structuring. Food Hydrocolloids, 2019, 88, 114-118.	5.6	22
41	Structural mechanism and kinetics of inÂvitro gastric digestion are affected by process-induced changes in bovine milk. Food Hydrocolloids, 2019, 86, 172-183.	5.6	118
42	lsoenergic modification of whey protein structure by denaturation and crosslinking using transglutaminase. Food and Function, 2018, 9, 797-805.	2.1	24
43	Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection. Nutrients, 2018, 10, 1706.	1.7	23
44	Use of the Extended Fujita method for representing the molecular weight and molecular weight distributions of native and processed oat beta-glucans. Scientific Reports, 2018, 8, 11809.	1.6	4
45	Calcium Alters the Interfacial Organization of Hydrolyzed Lipids during Intestinal Digestion. Langmuir, 2018, 34, 7536-7544.	1.6	23
46	Dairy food structures influence the rates of nutrient digestion through different inÂvitro gastric behaviour. Food Hydrocolloids, 2017, 67, 63-73.	5.6	87
47	Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps ,. American Journal of Clinical Nutrition, 2017, 105, 1033-1045.	2.2	267
48	The effect of the protein corona on the interaction between nanoparticles and lipid bilayers. Journal of Colloid and Interface Science, 2017, 504, 741-750.	5.0	44
49	Innovative Methods and Applications in Mucoadhesion Research. Macromolecular Bioscience, 2017, 17, 1600534.	2.1	77
50	Study on the digestion of milk with prebiotic carbohydrates in a simulated gastrointestinal model. Journal of Functional Foods, 2017, 33, 149-154.	1.6	22
51	Raspberry pomace alters cecal microbial activity and reduces secondary bile acids in rats fed a high-fat diet. Journal of Nutritional Biochemistry, 2017, 46, 13-20.	1.9	21
52	Food: more than the sum of its parts. Current Opinion in Food Science, 2017, 16, 120-124.	4.1	13
53	Interaction between sodium chloride and texture in semi-hard Danish cheese as affected by brining time, dl -starter culture, chymosin type and cheese ripening. International Dairy Journal, 2017, 70, 34-45.	1.5	16
54	Oatmeal particle size alters glycemic index but not as a function of gastric emptying rate. American Journal of Physiology - Renal Physiology, 2017, 313, G239-G246.	1.6	34

#	Article	IF	CITATIONS
55	Characterisation, in vitro digestibility and expected glycemic index of commercial starches as uncooked ingredients. Journal of Food Science and Technology, 2016, 53, 4126-4134.	1.4	24
56	Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis. Scientific Reports, 2016, 6, 30279.	1.6	35
57	Physicochemical aspects of mucosa surface. RSC Advances, 2016, 6, 102634-102646.	1.7	11
58	Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. British Journal of Nutrition, 2016, 116, 816-833.	1.2	255
59	The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 2016, 88, 217-225.	2.9	180
60	The 4th International Conference on Food Digestion. Food Research International, 2016, 88, 179-180.	2.9	1
61	Increasing dietary oat fibre decreases the permeability of intestinal mucus. Journal of Functional Foods, 2016, 26, 418-427.	1.6	64
62	Flavonoid–gastrointestinal mucus interaction and its potential role in regulating flavonoid bioavailability and mucosal biophysical properties. Food Research International, 2016, 88, 342-347.	2.9	25
63	Application of recent advances in hydrodynamic methods for characterising mucins in solution. European Biophysics Journal, 2016, 45, 45-54.	1.2	7
64	Sodium alginate decreases the permeability of intestinal mucus. Food Hydrocolloids, 2016, 52, 749-755.	5.6	58
65	Roles for dietary fibre in the upper GI tract: The importance of viscosity. Food Research International, 2016, 88, 234-238.	2.9	58
66	Effect of protein corona magnetite nanoparticles derived from bread in vitro digestion on Caco-2 cells morphology and uptake. International Journal of Biochemistry and Cell Biology, 2016, 75, 212-222.	1.2	60
67	The role of plant cell wall encapsulation and porosity in regulating lipolysis during the digestion of almond seeds. Food and Function, 2016, 7, 69-78.	2.1	70
68	Cross-linking of sodium caseinate-structured emulsion with transglutaminase alters postprandial metabolic and appetite responses in healthy young individuals. British Journal of Nutrition, 2015, 114, 418-429.	1.2	8
69	Static and dynamic in vitro digestion models to study protein stability in the gastrointestinal tract. Drug Discovery Today: Disease Models, 2015, 17-18, 23-27.	1.2	21
70	Tracking the Fate of Pasta (<i>T. Durum</i> Semolina) Immunogenic Proteins by in Vitro Simulated Digestion. Journal of Agricultural and Food Chemistry, 2015, 63, 2660-2667.	2.4	54
71	How much is too much? Threshold dose distributions for 5 food allergens. Journal of Allergy and Clinical Immunology, 2015, 135, 964-971.	1.5	156
72	Use of metabolomics and fluorescence recovery after photobleaching to study the bioavailability and intestinal mucus diffusion of polyphenols from cauliflower waste. Journal of Functional Foods, 2015, 16, 403-413.	1.6	21

#	Article	IF	CITATIONS
73	The influence of small intestinal mucus structure on particle transport ex vivo. Colloids and Surfaces B: Biointerfaces, 2015, 135, 73-80.	2.5	94
74	Technical tip: high-resolution isolation of nanoparticle–protein corona complexes from physiological fluids. Nanoscale, 2015, 7, 11980-11990.	2.8	32
75	Food allergy in the Netherlands: differences in clinical severity, causative foods, sensitization and DBPCFC between community and outpatients. Clinical and Translational Allergy, 2015, 5, 8.	1.4	13
76	Hydrodynamic characterisation of chitosan and its interaction with two polyanions: DNA and xanthan. Carbohydrate Polymers, 2015, 122, 359-366.	5.1	14
77	InfoGest Consensus Method. , 2015, , 13-22.		13
78	Transport of Particles in Intestinal Mucus under Simulated Infant and Adult Physiological Conditions: Impact of Mucus Structure and Extracellular DNA. PLoS ONE, 2014, 9, e95274.	1.1	70
79	Bioaccessibility of T-2 and HT-2 toxins in mycotoxin contaminated bread models submitted to in vitro human digestion. Innovative Food Science and Emerging Technologies, 2014, 22, 248-256.	2.7	12
80	Characterization of Citrus pectin edible films containing transglutaminase-modified phaseolin. Carbohydrate Polymers, 2014, 106, 200-208.	5.1	53
81	Biopolymers 2013: Biopolymer assemblies for material design. Biopolymers, 2014, 101, 913-914.	1.2	1
82	Trehaloseâ€containing hydrocolloid edible films prepared in the presence of transglutaminase. Biopolymers, 2014, 101, 931-937.	1.2	22
83	Specificity of Infant Digestive Conditions: Some Clues for Developing Relevant In Vitro Models. Critical Reviews in Food Science and Nutrition, 2014, 54, 1427-1457.	5.4	213
84	The impact of the Maillard reaction on the in vitro proteolytic breakdown of bovine lactoferrin in adults and infants. Food and Function, 2014, 5, 1898-1908.	2.1	51
85	Reprint of "Bioaccessibility of T-2 and HT-2 toxins in mycotoxin contaminated bread models submitted to in vitro human digestion". Innovative Food Science and Emerging Technologies, 2014, 25, 88-96.	2.7	7
86	Coupling deterministic and random sequential approaches for structure and texture prediction of a dairy oil-in-water emulsion. Innovative Food Science and Emerging Technologies, 2014, 25, 28-39.	2.7	1
87	A multi-laboratory evaluation of a clinically-validated incurred quality control material for analysis of allergens in food. Food Chemistry, 2014, 148, 30-36.	4.2	44
88	Impact of the Maillard reaction on the antioxidant capacity of bovine lactoferrin. Food Chemistry, 2013, 141, 3796-3802.	4.2	40
89	Impact of dietary fibers on the properties and proteolytic digestibility of lactoferrin nano-particles. Food Hydrocolloids, 2013, 31, 33-41.	5.6	67
90	Stability of sunflower 2S albumins and LTP to physiologically relevant in vitro gastrointestinal digestion. Food Chemistry, 2013, 138, 2374-2381.	4.2	23

ALAN R MACKIE

#	Article	IF	CITATIONS
91	Interfacial cross-linking of β-casein changes the structure of the adsorbed layer. Food Hydrocolloids, 2013, 32, 271-277.	5.6	29
92	Specific food structures supress appetite through reduced gastric emptying rate. American Journal of Physiology - Renal Physiology, 2013, 304, G1038-G1043.	1.6	87
93	Enzymatically Structured Emulsions in Simulated Gastrointestinal Environment: Impact on Interfacial Proteolysis and Diffusion in Intestinal Mucus. Langmuir, 2012, 28, 17349-17362.	1.6	40
94	(Bio)chemical reactions during high pressure/high temperature processing affect safety and quality of plant-based foods. Trends in Food Science and Technology, 2012, 23, 28-38.	7.8	50
95	High fat food increases gastric residence and thus thresholds for objective symptoms in allergic patients. Molecular Nutrition and Food Research, 2012, 56, 1708-1714.	1.5	29
96	Lamellar Structures of MUC2-Rich Mucin: A Potential Role in Governing the Barrier and Lubricating Functions of Intestinal Mucus. Biomacromolecules, 2012, 13, 3253-3261.	2.6	91
97	The Role of the Mucus Barrier in Digestion. Food Digestion, 2012, 3, 8-15.	0.9	17
98	The effect of gel structure on the kinetics of simulated gastrointestinal digestion of bovine β-lactoglobulin. Food Chemistry, 2012, 134, 2156-2163.	4.2	72
99	Enzymatic cross-linking of β-lactoglobulin in solution and at air–water interface: Structural constraints. Food Hydrocolloids, 2012, 28, 1-9.	5.6	37
100	Adsorption of bile salts to particles allows penetration of intestinal mucus. Soft Matter, 2011, 7, 8077.	1.2	77
101	Transglutaminase cross-linking kinetics of sodium caseinate is changed after emulsification. Food Hydrocolloids, 2011, 25, 843-850.	5.6	40
102	The role of bile salts in digestion. Advances in Colloid and Interface Science, 2011, 165, 36-46.	7.0	422
103	An International Network for Improving Health Properties of Food by Sharing our Knowledge on the Digestive Process. Food Digestion, 2011, 2, 23-25.	0.9	24
104	Highâ€pressure treatment reduces the immunoreactivity of the major allergens in apple and celeriac. Molecular Nutrition and Food Research, 2011, 55, 1087-1095.	1.5	50
105	Responsiveness of the major birch allergen Bet v 1 scaffold to the gastric environment: Impact on structure and allergenic activity. Molecular Nutrition and Food Research, 2011, 55, 1690-1699.	1.5	35
106	Boiling peanut Ara h 1 results in the formation of aggregates with reduced allergenicity. Molecular Nutrition and Food Research, 2011, 55, 1887-1894.	1.5	101
107	Effect of Heating and Glycation on the Allergenicity of 2S Albumins (Ara h 2/6) from Peanut. PLoS ONE, 2011, 6, e23998.	1.1	99
108	Comparative resistance of food proteins to adult and infant <i>in vitro</i> digestion models. Molecular Nutrition and Food Research, 2010, 54, 767-780.	1.5	196

#	Article	IF	CITATIONS
109	Food processing increases casein resistance to simulated infant digestion. Molecular Nutrition and Food Research, 2010, 54, 1677-1689.	1.5	131
110	High pressure, thermal and pulsed electricâ€fieldâ€induced structural changes in selected food allergens. Molecular Nutrition and Food Research, 2010, 54, 1701-1710.	1.5	96
111	Colloidal aspects of protein digestion. Current Opinion in Colloid and Interface Science, 2010, 15, 102-108.	3.4	137
112	The Structural Characteristics of Nonspecific Lipid Transfer Proteins Explain Their Resistance to Gastroduodenal Proteolysis. Biochemistry, 2010, 49, 2130-2139.	1.2	43
113	Structural Stability and Surface Activity of Sunflower 2S Albumins and Nonspecific Lipid Transfer Protein. Journal of Agricultural and Food Chemistry, 2010, 58, 6490-6497.	2.4	30
114	The Effect of Processing and the Food Matrix on Allergenicity of Foods. , 2009, , 21-30.		0
115	Modulating Lipid Delivery in Food Emulsions. ACS Symposium Series, 2009, , 67-88.	0.5	1
116	Impact of food processing on the structural and allergenic properties of food allergens. Molecular Nutrition and Food Research, 2009, 53, 963-969.	1.5	187
117	Effect of crystalline emulsifier composition on structural transformations of water-in-oil emulsions: Emulsification and quiescent conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 334, 40-52.	2.3	41
118	Partially Folded Forms of Barley Lipid Transfer Protein Are More Surface Active. Biochemistry, 2009, 48, 12081-12088.	1.2	18
119	Emulsification alters simulated gastrointestinal proteolysis of β-casein and β-lactoglobulin. Soft Matter, 2009, 5, 538-550.	1.2	193
120	Effects of gastrointestinal digestion and heating on the allergenicity of the kiwi allergens Act d 1, actinidin, and Act d 2, a thaumatinâ€like protein. Molecular Nutrition and Food Research, 2008, 52, 1130-1139.	1.5	78
121	Interfacial Characterization of β-Lactoglobulin Networks: Displacement by Bile Salts. Langmuir, 2008, 24, 6759-6767.	1.6	151
122	Surface Properties Are Highly Sensitive to Small pH Induced Changes in the 3-D Structure of α-Lactalbumin. Biochemistry, 2008, 47, 1659-1666.	1.2	17
123	The impact of processing on allergenicity of food. Current Opinion in Allergy and Clinical Immunology, 2008, 8, 249-253.	1.1	76
124	Influence of pH on the Molecular Structure and Bubble Stabilising Properties of Bovine α-Lactalbumin. , 2008, , 131-140.		0
125	Postâ€ŧranslational modification of barley LTP1b: The lipid adduct lies in the hydrophobic cavity and alters the protein dynamics. FEBS Letters, 2007, 581, 4557-4561.	1.3	6
126	Heat Treatment of Bovine α-Lactalbumin Results in Partially Folded, Disulfide Bond Shuffled States with Enhanced Surface Activity. Biochemistry, 2007, 46, 9774-9784.	1.2	38

#	Article	IF	CITATIONS
127	Effect of the Interfacial Layer Composition on the Properties of Emulsion Creams. Journal of Agricultural and Food Chemistry, 2007, 55, 5611-5619.	2.4	31
128	Preparation and characterisation of a novel buoyancy and refractive index matched oil-in-water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 453-461.	2.3	13
129	Structure modification in hen egg yolk low density lipoproteins layers between 30 and 45mN/m observed by AFM. Colloids and Surfaces B: Biointerfaces, 2007, 54, 241-248.	2.5	14
130	Structures and rheological properties of hen egg yolk low density lipoprotein layers spread at the air–water interface at pH 3 and 7. Colloids and Surfaces B: Biointerfaces, 2007, 57, 124-133.	2.5	25
131	Quantitative Imaging of Aggregated Emulsions. Langmuir, 2006, 22, 2005-2015.	1.6	11
132	The role of interactions in defining the structure of mixed protein–surfactant interfaces. Advances in Colloid and Interface Science, 2005, 117, 3-13.	7.0	128
133	Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. European Journal of Immunology, 2005, 35, 911-921.	1.6	136
134	Phospholipid Interactions Protect the Milk Allergen α-Lactalbumin from Proteolysis during in Vitro Digestion. Journal of Agricultural and Food Chemistry, 2005, 53, 9810-9816.	2.4	112
135	Effect of Processing on the Displacement of Whey Proteins:Â Applying the Orogenic Model to a Real System. Journal of Agricultural and Food Chemistry, 2004, 52, 1287-1292.	2.4	33
136	Lateral diffusion of Toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. Journal of Cell Science, 2004, 117, 4007-4014.	1.2	142
137	Lipoteichoic Acid and Toll-like Receptor 2 Internalization and Targeting to the Golgi Are Lipid Raft-dependent. Journal of Biological Chemistry, 2004, 279, 40882-40889.	1.6	118
138	Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging. Advances in Colloid and Interface Science, 2004, 107, 27-49.	7.0	176
139	Proteins and emulsifiers at liquid interfaces. Advances in Colloid and Interface Science, 2004, 108-109, 63-71.	7.0	404
140	Structure of adsorbed layers of mixtures of proteins and surfactants. Current Opinion in Colloid and Interface Science, 2004, 9, 357-361.	3.4	56
141	Rheology of Mixed β-Casein/β-Lactoglobulin Films at the Airâ^'Water Interface. Journal of Agricultural and Food Chemistry, 2004, 52, 3930-3937.	2.4	74
142	Effect of Surfactant Type on Surfactantâ^'Protein Interactions at the Airâ^'Water Interface. Biomacromolecules, 2004, 5, 984-991.	2.6	97
143	Molecular diffusion in sperm plasma membranes during epididymal maturation. Molecular and Cellular Endocrinology, 2004, 216, 41-46.	1.6	37
144	Combinational clustering of receptors following stimulation by bacterial products determines lipopolysaccharide responses. Biochemical Journal, 2004, 381, 527-536.	1.7	131

#	Article	IF	CITATIONS
145	Growth of Surfactant Domains in Protein Films. Langmuir, 2003, 19, 6032-6038.	1.6	49
146	Id Proteins Negatively Regulate Basic Helix-Loop-Helix Transcription Factor Function by Disrupting Subnuclear Compartmentalization. Journal of Biological Chemistry, 2003, 278, 45770-45776.	1.6	40
147	Measurement of the Lateral Diffusion of Human MHC Class I Molecules on HeLa Cells by Fluorescence Recovery after Photobleaching Using a Phycoerythrin Probe. Biophysical Journal, 2002, 82, 1828-1834.	0.2	28
148	Diffusion of lactic acid in a buffered gel system supporting growth ofLactobacillus curvatus. Journal of the Science of Food and Agriculture, 2002, 82, 1729-1734.	1.7	4
149	Atomic Force Microscopy as a Tool for Interpreting the Rheology of Food Biopolymers at the Molecular Level. LWT - Food Science and Technology, 2001, 34, 3-10.	2.5	59
150	Adsorbed Protein Secondary and Tertiary Structures by Circular Dichroism and Infrared Spectroscopy with Refractive Index Matched Emulsions. Journal of Agricultural and Food Chemistry, 2001, 49, 859-866.	2.4	107
151	Scanning Near Field Optical Microscopy of Phase Separated Regions in a Mixed Interfacial Protein (BSA)â^'Surfactant (Tween 20) Film. Langmuir, 2001, 17, 2013-2018.	1.6	25
152	In Situ Measurement of the Displacement of Protein Films from the Air/Water Interface by Surfactant. Biomacromolecules, 2001, 2, 1001-1006.	2.6	111
153	Orogenic Displacement in Mixed β-Lactoglobulin/β-Casein Films at the Air/Water Interface. Langmuir, 2001, 17, 6593-6598.	1.6	115
154	Diffusion Barriers in Ram and Boar Sperm Plasma Membranes: Directionality of Lipid Diffusion Across the Posterior Ring1. Biology of Reproduction, 2001, 64, 113-119.	1.2	21
155	Fluorescence recovery after photobleaching reveals that LPS rapidly transfers from CD14 to hsp70 and hsp90 on the cell membrane. Journal of Cell Science, 2001, 114, 2535-2545.	1.2	87
156	Competitive Displacement of β-Lactoglobulin from the Air/Water Interface by Sodium Dodecyl Sulfate. Langmuir, 2000, 16, 8176-8181.	1.6	109
157	Orogenic Displacement of Protein from the Oil/Water Interface. Langmuir, 2000, 16, 2242-2247.	1.6	154
158	Motion of a Cell Wall Polysaccharide Observed by Atomic Force Microscopy. Macromolecules, 2000, 33, 5680-5685.	2.2	26
159	Adsorption of beta-Lactoglobulin variants A and B to the air-water interface. International Journal of Food Science and Technology, 1999, 34, 509-516.	1.3	26
160	Orogenic Displacement of Protein from the Air/Water Interface by Competitive Adsorption. Journal of Colloid and Interface Science, 1999, 210, 157-166.	5.0	328
161	Bursting the bubble; how surfactants destabilize protein foams, revealed by atomic force microscopy. Surface and Interface Analysis, 1999, 27, 433-436.	0.8	17
162	InSituObservation of the Surfactant-Induced Displacement of Protein from a Graphite Surface by Atomic Force Microscopy. Langmuir, 1999, 15, 4636-4640.	1.6	50

#	Article	IF	CITATIONS
163	Emulsion Stability as Affected by Competitive Adsorption Between an Oil-Soluble Emulsifier and Milk Proteins at the Interface. Journal of Food Science, 1998, 63, 39-43.	1.5	73
164	Regionalized Lipid Diffusion in the Plasma Membrane of Mammalian Spermatozoa. Biology of Reproduction, 1998, 59, 1506-1514.	1.2	60
165	Structureâ^'Function Relations of Variant and Fragment Nisins Studied with Model Membrane Systems. Biochemistry, 1997, 36, 3802-3810.	1.2	43
166	A Comparison of the Functional and Interfacial Properties of β-Casein and Dephosphorylated β-Casein. Journal of Colloid and Interface Science, 1997, 195, 77-85.	5.0	40
167	Competitive adsorption of β-lactoglobulin and β-casein with Span 80 at the oil-water interface and the effects on emulsion behaviour. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 114, 237-244.	2.3	41
168	Process-Induced Changes in MolecularStructure that Alter Adsorbed Layer Propertiesin Oil-in-Water Emulsions Stabilised byl²-Casein/Tween20 Mixtures. Journal of the Science of Food and Agriculture, 1996, 70, 413-421.	1.7	14
169	Surface Diffusion in Phospholipid Foam Films. Journal of Colloid and Interface Science, 1995, 174, 283-288.	5.0	23
170	Differences in the structure and dynamics of the adsorbed layers in protein-stabilized model foams and emulsions. Faraday Discussions, 1994, 98, 253.	1.6	57
171	Competitive effects in the adsorbed layer of oil-in-water emulsions stabilised by β-lactoglobulin–Tween 20 mixtures. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2755-2759.	1.7	19
172	Characterisation of adsorbed layers of a disordered coil protein on polystyrene latex. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 3043.	1.7	65
173	Ultrasmall-angle X-ray scattering studies of heterogeneous systems using synchrotron radiation techniques. Nuclear Instruments & Methods in Physics Research B, 1990, 47, 283-290.	0.6	12
174	Surface diffusion in sodium dodecyl sulfate-stabilized thin liquid films. Journal of Colloid and Interface Science, 1990, 138, 195-206.	5.0	62
175	Molecular diffusion and thickness measurements of protein-stabilized thin liquid films. Journal of Colloid and Interface Science, 1990, 138, 207-219.	5.0	79
176	The interaction of bovine serum albumin and lysozyme and its effect on foam composition. Food Hydrocolloids, 1988, 2, 209-223.	5.6	14
177	Microemulsion-based gels: A small-angle neutron scattering study. Chemical Physics Letters, 1988, 151, 494-498.	1.2	30
178	Small-angle x-ray scattering studies of heterogeneous systems using synchrotron radiation techniques. Nuclear Instruments & Methods in Physics Research B, 1988, 34, 188-202.	0.6	10
179	Stability of oil-in-water emulsions. The effect of dispersed phase and polysaccharide on creaming. Colloids and Surfaces, 1986, 20, 65-80.	0.9	17
180	TECHNIQUE TO MEASURE EMULSION CREAMING BY VELOCITY OF ULTRASOUND. Journal of Dispersion Science and Technology, 1986, 7, 231-243.	1.3	58

#	Article	IF	CITATIONS
181	Molecular interactions in mixed protein + ionic surfactant interfaces. Special Publication - Royal Society of Chemistry, 0, , 143-151.	0.0	3
182	Scratching the surface: Imaging interfacial structure using atomic force microscopy. , 0, , 13-21.		2
183	Probing emulsion droplet interactions at the single droplet level. Special Publication - Royal Society of Chemistry, 0, , 85-96.	0.0	Ο
184	Chapter 26. Role of Protein-Stabilized Interfaces on the Microstructure and Rheology of Oil-in-Water Emulsions. , 0, , 385-397.		0
185	Interfacial mechanisms underlying lipid damage of beer foam. Special Publication - Royal Society of Chemistry, 0, , 200-206.	0.0	0