List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5114943/publications.pdf Version: 2024-02-01

		2544	5394
422	33,782	96	164
papers	citations	h-index	g-index
451	451	451	23627
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A theoretical catalytic mechanism for methanol reforming in CeO2 vs Ni/CeO2 by energy transition states profiles. Catalysis Today, 2022, 392-393, 146-153.	4.4	6
2	Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph catalysts: Characterization and kinetics. Chemical Engineering Journal, 2022, 427, 130947.	12.7	29
3	Infrared reflection absorption spectroscopy and temperature-programmed desorption studies of CO adsorption on Ni/CeO2(111) thin films: The role of the ceria support. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 013209.	2.1	0
4	Understanding the Surface Structure and Catalytic Activity of SnO _{<i>x</i>} /Au(111) Inverse Catalysts for CO ₂ and H ₂ Activation. Journal of Physical Chemistry C, 2022, 126, 4862-4870.	3.1	5
5	Au and Pt Remain Unoxidized on a CeO ₂ -Based Catalyst during the Water–Gas Shift Reaction. Journal of the American Chemical Society, 2022, 144, 446-453.	13.7	31
6	In Situ Studies of Methane Activation Using Synchrotron-Based Techniques: Guiding the Conversion of C–H Bonds. ACS Catalysis, 2022, 12, 5470-5488.	11.2	8
7	Investigating the Elusive Nature of Atomic O from CO ₂ Dissociation on Pd(111): The Role of Surface Hydrogen. Journal of Physical Chemistry C, 2022, 126, 7870-7879.	3.1	1
8	Tuning Selectivity in the Direct Conversion of Methane to Methanol: Bimetallic Synergistic Effects on the Cleavage of C–H and O–H Bonds over NiCu/CeO ₂ Catalysts. Journal of Physical Chemistry Letters, 2022, 13, 5589-5596.	4.6	6
9	Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization. Applied Catalysis B: Environmental, 2021, 282, 119581.	20.2	154
10	Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction. Electrochimica Acta, 2021, 368, 137598.	5.2	9
11	Modulation of the Effective Metal‣upport Interactions for the Selectivity of Ceria Supported Noble Metal Nanoclusters in Atmospheric CO ₂ Hydrogenation. ChemCatChem, 2021, 13, 874-881.	3.7	11
12	Methane oxidation activity and nanoscale characterization of Pd/CeO2 catalysts prepared by dry milling Pd acetate and ceria. Applied Catalysis B: Environmental, 2021, 282, 119567.	20.2	61
13	Surface characterization and methane activation on SnO _{<i>x</i>} /Cu ₂ O/Cu(111) inverse oxide/metal catalysts. Physical Chemistry Chemical Physics, 2021, 23, 17186-17196.	2.8	10
14	Spot the difference: hydrogen adsorption and dissociation on unsupported platinum and platinum-coated transition metal carbides. Physical Chemistry Chemical Physics, 2021, 23, 20255-20267.	2.8	10
15	Size and Stoichiometry Effects on the Reactivity of MoC _{<i>y</i>} Nanoparticles toward Ethylene. Journal of Physical Chemistry C, 2021, 125, 6287-6297.	3.1	5
16	Understanding Methanol Synthesis on Inverse ZnO/CuO _{<i>x</i>} /Cu Catalysts: Stability of CH ₃ O Species and Dynamic Nature of the Surface. Journal of Physical Chemistry C, 2021, 125, 6673-6683.	3.1	21
17	Assessing the Activity of Ni Clusters Supported on TiC(001) toward CO ₂ and H ₂ Dissociation. Journal of Physical Chemistry C, 2021, 125, 12019-12027.	3.1	15
18	Reaction Pathway for Coke-Free Methane Steam Reforming on a Ni/CeO ₂ Catalyst: Active Sites and the Role of Metal–Support Interactions. ACS Catalysis, 2021, 11, 8327-8337.	11.2	39

#	Article	IF	CITATIONS
19	Supported Molybdenum Carbide Nanoparticles as an Excellent Catalyst for CO ₂ Hydrogenation. ACS Catalysis, 2021, 11, 9679-9687.	11.2	29
20	Cesium-Induced Active Sites for C–C Coupling and Ethanol Synthesis from CO ₂ Hydrogenation on Cu/ZnO(0001ì) Surfaces. Journal of the American Chemical Society, 2021, 143, 13103-13112.	13.7	47
21	Pushing Cu uphill of the volcano curve: Impact of a WC support on the catalytic activity of copper toward the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 25092-25102.	7.1	7
22	Adsorption and activation of CO2 on Pt/CeOx/TiO2(110): Role of the Pt-CeOx interface. Surface Science, 2021, 710, 121852.	1.9	5
23	Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst. Journal of Energy Chemistry, 2021, 61, 602-611.	12.9	51
24	Metal–Support Interactions and C1 Chemistry: Transforming Pt-CeO ₂ into a Highly Active and Stable Catalyst for the Conversion of Carbon Dioxide and Methane. ACS Catalysis, 2021, 11, 1613-1623.	11.2	39
25	<i>In Situ</i> Studies of Methanol Decomposition Over Cu(111) and Cu ₂ O/Cu(111): Effects of Reactant Pressure, Surface Morphology, and Hot Spots of Active Sites. Journal of Physical Chemistry C, 2021, 125, 558-571.	3.1	18
26	Microwave-Assisted Synthesis of Cu@IrO ₂ Core-Shell Nanowires for Low-Temperature Methane Conversion. ACS Applied Nano Materials, 2021, 4, 11145-11158.	5.0	7
27	CO ₂ Hydrogenation on ZrO ₂ /Cu(111) Surfaces: Production of Methane and Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 18900-18906.	3.7	16
28	Selective Methane Oxidation to Methanol on ZnO/Cu ₂ O/Cu(111) Catalysts: Multiple Site-Dependent Behaviors. Journal of the American Chemical Society, 2021, 143, 19018-19032.	13.7	41
29	Reversing sintering effect of Ni particles on Î ³ -Mo2N via strong metal support interaction. Nature Communications, 2021, 12, 6978.	12.8	58
30	Structure and Chemical State of Cesium on Well-Defined Cu(111) and Cu ₂ O/Cu(111) Surfaces. Journal of Physical Chemistry C, 2020, 124, 3107-3121.	3.1	16
31	Effects of Zr Doping into Ceria for the Dry Reforming of Methane over Ni/CeZrO ₂ Catalysts: In Situ Studies with XRD, XAFS, and AP-XPS. ACS Catalysis, 2020, 10, 3274-3284.	11.2	107
32	Activation of Gold on Metal Carbides: Novel Catalysts for C1 Chemistry. Frontiers in Chemistry, 2020, 7, 875.	3.6	10
33	Breaking Simple Scaling Relations through Metal–Oxide Interactions: Understanding Room-Temperature Activation of Methane on M/CeO ₂ (M = Pt, Ni, or Co) Interfaces. Journal of Physical Chemistry Letters, 2020, 11, 9131-9137.	4.6	27
34	Low Temperature Activation of Methane on Metal-Oxides and Complex Interfaces: Insights from Surface Science. Accounts of Chemical Research, 2020, 53, 1488-1497.	15.6	66
35	Optimized Microwave-Based Synthesis of Thermally Stable Inverse Catalytic Core–shell Motifs for CO2 Hydrogenation. ACS Applied Materials & Interfaces, 2020, 12, 32591-32603.	8.0	10
36	Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nature Communications, 2020, 11, 5767.	12.8	197

#	Article	IF	CITATIONS
37	Hydrogenation of CO ₂ to Methanol on a Au ^{δ+} –In ₂ O _{3–<i>x</i>} Catalyst. ACS Catalysis, 2020, 10, 11307-1131	7 ^{11.2}	142
38	Deciphering Dynamic Structural and Mechanistic Complexity in Cu/CeO ₂ /ZSM-5 Catalysts for the Reverse Water-Gas Shift Reaction. ACS Catalysis, 2020, 10, 10216-10228.	11.2	39
39	Structural, electronic, and magnetic properties of Ni nanoparticles supported on the TiC(001) surface. Physical Chemistry Chemical Physics, 2020, 22, 26145-26154.	2.8	8
40	Nucleation and Initial Stages of Growth during the Atomic Layer Deposition of Titanium Oxide on Mesoporous Silica. Nano Letters, 2020, 20, 6884-6890.	9.1	23
41	Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study. ACS Catalysis, 2020, 10, 6213-6222.	11.2	21
42	Promoting effect of tungsten carbide on the catalytic activity of Cu for CO ₂ reduction. Physical Chemistry Chemical Physics, 2020, 22, 13666-13679.	2.8	16
43	Template-free fabrication of fractal porous Y2O3 monolithic foam and its functional modification by Ni-doping. Science China Materials, 2020, 63, 1842-1847.	6.3	0
44	Boosting the activity of transition metal carbides towards methane activation by nanostructuring. Physical Chemistry Chemical Physics, 2020, 22, 7110-7118.	2.8	18
45	Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio. Journal of CO2 Utilization, 2020, 41, 101215.	6.8	51
46	Studies of CO ₂ hydrogenation over cobalt/ceria catalysts with <i>in situ</i> characterization: the effect of cobalt loading and metal–support interactions on the catalytic activity. Catalysis Science and Technology, 2020, 10, 6468-6482.	4.1	23
47	Synchrotron Consortia for Catalysis and Electrocatalysis Research. Synchrotron Radiation News, 2020, 33, 2-3.	0.8	1
48	Growth and structural studies of In/Au(111) alloys and InOx/Au(111) inverse oxide/metal model catalysts. Journal of Chemical Physics, 2020, 152, 054702.	3.0	6
49	Morphology and chemical behavior of model CsOx/Cu2O/Cu(111) nanocatalysts for methanol synthesis: Reaction with CO2 and H2. Journal of Chemical Physics, 2020, 152, 044701.	3.0	8
50	Water-promoted interfacial pathways in methane oxidation to methanol on a CeO ₂ -Cu ₂ O catalyst. Science, 2020, 368, 513-517.	12.6	182
51	Preparation and Structural Characterization of ZrO ₂ /CuO <i>_x</i> /Cu(111) Inverse Model Catalysts. Journal of Physical Chemistry C, 2020, 124, 10502-10508.	3.1	12
52	Supported Molybdenum Carbide Nanoparticles as Hot Hydrogen Reservoirs for Catalytic Applications. Journal of Physical Chemistry Letters, 2020, 11, 8437-8441.	4.6	11
53	Location and chemical speciation of Cu in ZSM-5 during the water-gas shift reaction. Catalysis Today, 2019, 323, 216-224.	4.4	14
54	Hydroxylation of ZnO/Cu(1 1 1) inverse catalysts under ambient water vapor and the water–gas shift reaction. Journal Physics D: Applied Physics, 2019, 52, 454001.	2.8	8

#	Article	IF	CITATIONS
55	Binding and activation of ethylene on tungsten carbide and platinum surfaces. Physical Chemistry Chemical Physics, 2019, 21, 17332-17342.	2.8	9
56	Exploring Metal–Support Interactions To Immobilize Subnanometer Co Clusters on γ–Mo ₂ N: A Highly Selective and Stable Catalyst for CO ₂ Activation. ACS Catalysis, 2019, 9, 9087-9097.	11.2	50
5 7	Water–Gas Shift Reaction on K/Cu(111) and Cu/K/TiO ₂ (110) Surfaces: Alkali Promotion of Water Dissociation and Production of H ₂ . ACS Catalysis, 2019, 9, 10751-10760.	11.2	38
58	Kinetic Monte Carlo Simulations Unveil Synergic Effects at Work on Bifunctional Catalysts. ACS Catalysis, 2019, 9, 9117-9126.	11.2	30
59	Conversion of CO ₂ on a highly active and stable Cu/FeO _x /CeO ₂ catalyst: tuning catalytic performance by oxide-oxide interactions. Catalysis Science and Technology, 2019, 9, 3735-3742.	4.1	28
60	Understanding the Photocatalytic Properties of Pt/CeO _{<i>x</i>} /TiO ₂ : Structural Effects on Electronic and Optical Properties. ChemPhysChem, 2019, 20, 1624-1629.	2.1	8
61	CO, CO2, and H2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites. Journal of Physical Chemistry C, 2019, 123, 8871-8883.	3.1	30
62	Highly Active Ceria-Supported Ru Catalyst for the Dry Reforming of Methane: In Situ Identification of Ru ^{Î+} –Ce ³⁺ Interactions for Enhanced Conversion. ACS Catalysis, 2019, 9, 3349-3359.	11.2	135
63	Room Temperature Methane Capture and Activation by Ni Clusters Supported on TiC(001): Effects of Metal–Carbide Interactions on the Cleavage of the C–H Bond. Journal of the American Chemical Society, 2019, 141, 5303-5313.	13.7	57
64	The behavior of inverse oxide/metal catalysts: CO oxidation and water-gas shift reactions over ZnO/Cu(111) surfaces. Surface Science, 2019, 681, 116-121.	1.9	27
65	Catalysts for the Steam Reforming of Ethanol and Other Alcohols. , 2019, , 133-158.		13
66	Technologies for control of sulfur and nitrogen compounds and particulates in coal combustion and gasification. , 2019, , 141-173.		6
67	Potassium-Promoted Reduction of Cu ₂ O/Cu(111) by CO. Journal of Physical Chemistry C, 2019, 123, 8057-8066.	3.1	20
68	Combining Theory and Experiment for Multitechnique Characterization of Activated CO ₂ on Transition Metal Carbide (001) Surfaces. Journal of Physical Chemistry C, 2019, 123, 7567-7576.	3.1	22
69	Methane activation and conversion on well-defined metal-oxide Surfaces: <i>in situ</i> studies with synchrotron-based techniques. Catalysis, 2019, , 198-215.	1.0	2
70	<i>In Situ</i> Characterization of Mesoporous Co/CeO ₂ Catalysts for the High-Temperature Water-Gas Shift. Journal of Physical Chemistry C, 2018, 122, 8998-9008.	3.1	28
71	High Activity of Au/K/TiO ₂ (110) for CO Oxidation: Alkali-Metal-Enhanced Dispersion of Au and Bonding of CO. Journal of Physical Chemistry C, 2018, 122, 4324-4330.	3.1	22
72	Enhanced, robust light-driven H ₂ generation by gallium-doped titania nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 2104-2112.	2.8	23

#	Article	IF	CITATIONS
73	In Situ Elucidation of the Active State of Co–CeO _{<i>x</i>} Catalysts in the Dry Reforming of Methane: The Important Role of the Reducible Oxide Support and Interactions with Cobalt. ACS Catalysis, 2018, 8, 3550-3560.	11.2	80
74	Hydrogenation of CO ₂ on ZnO/Cu(100) and ZnO/Cu(111) Catalysts: Role of Copper Structure and Metal–Oxide Interface in Methanol Synthesis. Journal of Physical Chemistry B, 2018, 122, 794-800.	2.6	129
75	Methanol steam reforming over Ni-CeO2 model and powder catalysts: Pathways to high stability and selectivity for H2/CO2 production. Catalysis Today, 2018, 311, 74-80.	4.4	51
76	Diversity of Adsorbed Hydrogen on the TiC(001) Surface at High Coverages. Journal of Physical Chemistry C, 2018, 122, 28013-28020.	3.1	17
77	Reaction of Methane with MO <i>_x</i> /CeO ₂ (M = Fe, Ni, and Cu) Catalysts: In Situ Studies with Time-Resolved X-ray Diffraction. Journal of Physical Chemistry C, 2018, 122, 28739-28747.	3.1	15
78	Growth, Structure, and Catalytic Properties of ZnO <i>_x</i> Grown on CuO <i>_x</i> /Cu(111) Surfaces. Journal of Physical Chemistry C, 2018, 122, 26554-26562.	3.1	22
79	Structural and chemical state of doped and impregnated mesoporous Ni/CeO2 catalysts for the water-gas shift. Applied Catalysis A: General, 2018, 567, 1-11.	4.3	10
80	In Situ Characterization of Cu/CeO ₂ Nanocatalysts for CO ₂ Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity. Journal of Physical Chemistry C, 2018, 122, 12934-12943.	3.1	145
81	Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal–Support Interactions and Water-Enabled Catalytic Conversion by Site Blocking. Journal of the American Chemical Society, 2018, 140, 7681-7687.	13.7	141
82	Imaging the ordering of a weakly adsorbed two-dimensional condensate: ambient-pressure microscopy and spectroscopy of CO ₂ molecules on rutile TiO ₂ (110). Physical Chemistry Chemical Physics, 2018, 20, 13122-13126.	2.8	9
83	Waterâ€Gasâ€Shift over Metalâ€Free Nanocrystalline Ceria: An Experimental and Theoretical Study. ChemCatChem, 2017, 9, 1373-1377.	3.7	13
84	Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO ₂ hydrogenation, and methane and alcohol reforming. Chemical Society Reviews, 2017, 46, 1824-1841.	38.1	311
85	Importance of Low Dimensional CeOx Nanostructures in Pt/CeOx–TiO2 Catalysts for the Water–Gas Shift Reaction. Journal of Physical Chemistry C, 2017, 121, 6635-6642.	3.1	17
86	Interfaces in heterogeneous catalytic reactions: Ambient pressure XPS as a tool to unravel surface chemistry. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 28-43.	1.7	41
87	Highly active Au/Î ² -MoC and Au/Î ² -Mo ₂ C catalysts for the low-temperature water gas shift reaction: effects of the carbide metal/carbon ratio on the catalyst performance. Catalysis Science and Technology, 2017, 7, 5332-5342.	4.1	39
88	Cu supported on mesoporous ceria: water gas shift activity at low Cu loadings through metal–support interactions. Physical Chemistry Chemical Physics, 2017, 19, 17708-17717.	2.8	25
89	Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science, 2017, 357, 389-393.	12.6	534
90	Elucidation of Active Sites for the Reaction of Ethanol on TiO ₂ /Au(111). Journal of Physical Chemistry C, 2017, 121, 7794-7802.	3.1	15

#	Article	IF	CITATIONS
91	New In-Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real-Time, Chemical, and Structure-Sensitive X-ray Probes. Synchrotron Radiation News, 2017, 30, 30-37.	0.8	28
92	Active sites for CO ₂ hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355, 1296-1299.	12.6	1,180
93	Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: a comprehensive periodic DFT study. Physical Chemistry Chemical Physics, 2017, 19, 1571-1579.	2.8	13
94	Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO ₂ /Au(111), and TiO ₂ /Au(111). ACS Sustainable Chemistry and Engineering, 2017, 5, 10783-10791.	6.7	32
95	Acetylene and Ethylene Adsorption on a β-Mo ₂ C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions. Journal of Physical Chemistry C, 2017, 121, 19786-19795.	3.1	22
96	Response to Comment on "Active sites for CO ₂ hydrogenation to methanol on Cu/ZnO catalysts― Science, 2017, 357, .	12.6	37
97	Inâ€Situ Investigation of Methane Dry Reforming on Metal/Ceria(111) Surfaces: Metal–Support Interactions and Câ^'H Bond Activation at Low Temperature. Angewandte Chemie, 2017, 129, 13221-13226.	2.0	9
98	Inâ€Situ Investigation of Methane Dry Reforming on Metal/Ceria(111) Surfaces: Metal–Support Interactions and Câ^'H Bond Activation at Low Temperature. Angewandte Chemie - International Edition, 2017, 56, 13041-13046.	13.8	120
99	Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance. Catalysis Today, 2017, 289, 47-52.	4.4	28
100	Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces. Surface Science, 2017, 656, 24-32.	1.9	50
101	Dry Reforming of Methane on a Highlyâ€Active Niâ€CeO ₂ Catalyst: Effects of Metalâ€Support Interactions on Câ~H Bond Breaking. Angewandte Chemie - International Edition, 2016, 55, 7455-7459.	13.8	276
102	Dry Reforming of Methane on a Highlyâ€Active Niâ€CeO ₂ Catalyst: Effects of Metalâ€&upport Interactions on Câ^'H Bond Breaking. Angewandte Chemie, 2016, 128, 7581-7585.	2.0	35
103	Three-dimensional ruthenium-doped TiO ₂ sea urchins for enhanced visible-light-responsive H ₂ production. Physical Chemistry Chemical Physics, 2016, 18, 15972-15979.	2.8	56
104	Virtual Special Issue on Catalysis at the U.S. Department of Energy's National Laboratories. ACS Catalysis, 2016, 6, 3227-3235.	11.2	2
105	Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–CeO ₂ (111) catalysts: an in situ study of C–C and O–H bond scission. Physical Chemistry Chemical Physics, 2016, 18, 16621-16628.	2.8	83
106	Low-Temperature Conversion of Methane to Methanol on CeO _{<i>x</i>} /Cu ₂ O Catalysts: Water Controlled Activation of the C–H Bond. Journal of the American Chemical Society, 2016, 138, 13810-13813.	13.7	125
107	Potassium and Water Coadsorption on TiO ₂ (110): OH-Induced Anchoring of Potassium and the Generation of Single-Site Catalysts. Journal of Physical Chemistry Letters, 2016, 7, 3866-3872.	4.6	14
108	Room-Temperature Activation of Methane and Dry Re-forming with CO ₂ on Ni-CeO ₂ (111) Surfaces: Effect of Ce ³⁺ Sites and Metal–Support Interactions on C–H Bond Cleavage. ACS Catalysis, 2016, 6, 8184-8191.	11.2	146

#	Article	IF	CITATIONS
109	Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO ₂ : The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability. Journal of the American Chemical Society, 2016, 138, 8269-8278.	13.7	140
110	Inverse Oxide/Metal Catalysts in Fundamental Studies and Practical Applications: A Perspective of Recent Developments. Journal of Physical Chemistry Letters, 2016, 7, 2627-2639.	4.6	120
111	Cu Deposited on CeOx-Modified TiO ₂ (110): Synergistic Effects at the Metal–Oxide Interface and the Mechanism of the WGS Reaction. ACS Catalysis, 2016, 6, 4608-4615.	11.2	43
112	Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces. Journal of Physical Chemistry C, 2016, 120, 13531-13540.	3.1	19
113	How to stabilize highly active Cu+ cations in a mixed-oxide catalyst. Catalysis Today, 2016, 263, 4-10.	4.4	11
114	Unraveling the Hydrogenation of TiO ₂ and Graphene Oxide/TiO ₂ Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis. Journal of Physical Chemistry C, 2016, 120, 3472-3482.	3.1	16
115	Organic Pollutant Photodecomposition by Ag/KNbO ₃ Nanocomposites: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2016, 120, 2777-2786.	3.1	50
116	Au and Pt nanoparticle supported catalysts tailored for H2 production: From models to powder catalysts. Applied Catalysis A: General, 2016, 518, 18-47.	4.3	30
117	Visible Light-Driven H ₂ Production over Highly Dispersed Ruthenia on Rutile TiO ₂ Nanorods. ACS Catalysis, 2016, 6, 407-417.	11.2	71
118	The conversion of CO ₂ to methanol on orthorhombic β-Mo ₂ C and Cu/β-Mo ₂ C catalysts: mechanism for admetal induced change in the selectivity and activity. Catalysis Science and Technology, 2016, 6, 6766-6777.	4.1	101
119	Elucidating the interaction between Ni and CeOx in ethanol steam reforming catalysts: A perspective of recent studies over model and powder systems. Applied Catalysis B: Environmental, 2016, 197, 184-197.	20.2	38
120	Hydrogenation of CO ₂ to Methanol on CeO _{<i>x</i>} /Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal–Oxide Interface and Importance of Ce ³⁺ Sites. Journal of Physical Chemistry C, 2016, 120, 1778-1784.	3.1	156
121	Frontispiece: Direct Epoxidation of Propylene over Stabilized Cu+Surface Sites on Titanium-Modified Cu2O. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	13.8	1
122	Direct Epoxidation of Propylene over Stabilized Cu ⁺ Surface Sites on Titaniumâ€Modified Cu ₂ 0. Angewandte Chemie - International Edition, 2015, 54, 11946-11951.	13.8	62
123	Frontispiz: Direct Epoxidation of Propylene over Stabilized Cu+Surface Sites on Titanium-Modified Cu2O. Angewandte Chemie, 2015, 127, n/a-n/a.	2.0	0
124	Surface-Structure Sensitivity of CeO ₂ Nanocrystals in Photocatalysis and Enhancing the Reactivity with Nanogold. ACS Catalysis, 2015, 5, 4385-4393.	11.2	158
125	Hierarchical Heterogeneity at the CeO _{<i>x</i>} –TiO ₂ Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures. Journal of Physical Chemistry C, 2015, 119, 2669-2679.	3.1	52
126	Exploring the activity of a novel Au/TiC(001) model catalyst towards CO and CO2 hydrogenation. Surface Science, 2015, 640, 141-149.	1.9	17

#	Article	IF	CITATIONS
127	In Situ and Theoretical Studies for the Dissociation of Water on an Active Ni/CeO ₂ Catalyst: Importance of Strong Metal–Support Interactions for the Cleavage of O–H Bonds. Angewandte Chemie - International Edition, 2015, 54, 3917-3921.	13.8	205
128	Low Pressure CO ₂ Hydrogenation to Methanol over Gold Nanoparticles Activated on a CeO _{<i>x</i>} /TiO ₂ Interface. Journal of the American Chemical Society, 2015, 137, 10104-10107.	13.7	200
129	CO Oxidation on Gold-Supported Iron Oxides: New Insights into Strong Oxide–Metal Interactions. Journal of Physical Chemistry C, 2015, 119, 16614-16622.	3.1	62
130	Pulse Studies to Decipher the Role of Surface Morphology in CuO/CeO2 Nanocatalysts for the Water Gas Shift Reaction. Catalysis Letters, 2015, 145, 808-815.	2.6	9
131	Insights into the structure–photoreactivity relationships in well-defined perovskite ferroelectric KNbO ₃ nanowires. Chemical Science, 2015, 6, 4118-4123.	7.4	66
132	Intermediates Arising from the Water–Gas Shift Reaction over Cu Surfaces: From UHV to Near Atmospheric Pressures. Topics in Catalysis, 2015, 58, 271-280.	2.8	15
133	The Carburization of Transition Metal Molybdates (MxMoO4, MÂ=ÂCu, Ni or Co) and the Generation of Highly Active Metal/Carbide Catalysts for CO2 Hydrogenation. Catalysis Letters, 2015, 145, 1365-1373.	2.6	52
134	Hydrogenation of CO ₂ to Methanol: Importance of Metal–Oxide and Metal–Carbide Interfaces in the Activation of CO ₂ . ACS Catalysis, 2015, 5, 6696-6706.	11.2	374
135	Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces. Journal of Chemical Physics, 2015, 143, 114704.	3.0	25
136	Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO _{<i>x</i>} (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation. Journal of Physical Chemistry C, 2015, 119, 18248-18256.	3.1	37
137	When ruthenia met titania: achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides. Physical Chemistry Chemical Physics, 2015, 17, 26813-26818.	2.8	0
138	Fundamentals of Methanol Synthesis on Metal Carbide Based Catalysts: Activation of CO2 and H2. Topics in Catalysis, 2015, 58, 159-173.	2.8	64
139	Superior performance of Ni–W–Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants. Journal of Catalysis, 2015, 321, 90-99.	6.2	47
140	Active gold-ceria and gold-ceria/titania catalysts for CO oxidation: From single-crystal model catalysts to powder catalysts. Catalysis Today, 2015, 240, 229-235.	4.4	26
141	Charge Polarization at a Au–TiC Interface and the Generation of Highly Active and Selective Catalysts for the Lowâ€Temperature Water–Gas Shift Reaction. Angewandte Chemie - International Edition, 2014, 53, 11270-11274.	13.8	67
142	The Activation of Gold and the Water–Gas Shift Reaction: Insights from Studies with Model Catalysts. Accounts of Chemical Research, 2014, 47, 773-782.	15.6	87
143	Unraveling the Nature of the Oxide–Metal Interaction in Ceria-Based Noble Metal Inverse Catalysts. Journal of Physical Chemistry C, 2014, 118, 26931-26938.	3.1	33
144	Structure and special chemical reactivity of interface-stabilized cerium oxide nanolayers on TiO ₂ (110). Nanoscale, 2014, 6, 800-810.	5.6	18

#	Article	IF	CITATIONS
145	The Unique Properties of the Oxide-Metal Interface: Reaction of Ethanol on an Inverse Model CeO _{<i>x</i>} –Au(111) Catalyst. Journal of Physical Chemistry C, 2014, 118, 25057-25064.	3.1	22
146	Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO ₂ catalysts for the water-gas shift reaction. Physical Chemistry Chemical Physics, 2014, 16, 17183-17195.	2.8	143
147	The bending machine: CO ₂ activation and hydrogenation on δ-MoC(001) and β-Mo ₂ C(001) surfaces. Physical Chemistry Chemical Physics, 2014, 16, 14912-14921.	2.8	175
148	Water-Gas Shift Reaction on Ni–W–Ce Catalysts: Catalytic Activity and Structural Characterization. Journal of Physical Chemistry C, 2014, 118, 2528-2538.	3.1	48
149	New Insights into the Structure of the C-Terminated β-Mo ₂ C (001) Surface from First-Principles Calculations. Journal of Physical Chemistry C, 2014, 118, 19224-19231.	3.1	13
150	Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO ₂ . Science, 2014, 345, 546-550.	12.6	1,114
151	Synthesis of α-MoC1-x and β-MoCy Catalysts for CO2 Hydrogenation by Thermal Carburization of Mo-oxide in Hydrocarbon and Hydrogen Mixtures. Catalysis Letters, 2014, 144, 1418-1424.	2.6	75
152	Improving the CO-PROX Performance of Inverse CeO ₂ /CuO Catalysts: Doping of the CuO Component with Zn. Journal of Physical Chemistry C, 2014, 118, 9030-9041.	3.1	34
153	When reconstruction comes around: Ni, Cu, and Au adatoms on δ-MoC(001). Surface Science, 2014, 624, 32-36.	1.9	5
154	Unraveling the Dynamic Nature of a CuO/CeO ₂ Catalyst for CO Oxidation in <i>Operando</i> : A Combined Study of XANES (Fluorescence) and DRIFTS. ACS Catalysis, 2014, 4, 1650-1661.	11.2	128
155	Stabilization of Catalytically Active Cu ⁺ Surface Sites on Titanium–Copper Mixedâ€Oxide Films. Angewandte Chemie - International Edition, 2014, 53, 5336-5340.	13.8	51
156	Nature of the Mixed-Oxide Interface in Ceria–Titania Catalysts: Clusters, Chains, and Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 14463-14471.	3.1	73
157	In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts. Physical Chemistry Chemical Physics, 2013, 15, 12004.	2.8	80
158	Assisted deprotonation of formic acid on Cu(111) and self-assembly of 1D chains. Physical Chemistry Chemical Physics, 2013, 15, 12291.	2.8	34
159	DESIGN AND MODELING OF ACTIVE SITES IN METAL–CERIA CATALYSTS FOR THE WATER GAS SHIFT REACTION AND RELATED CHEMICAL PROCESSES. Catalytic Science Series, 2013, , 465-495.	0.0	Ο
160	Gold-Based Catalysts for CO Oxidation, the Water-Gas Shift, and Desulfurization Processes. , 2013, , 1-20.		0
161	CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane. Journal of Catalysis, 2013, 307, 162-169.	6.2	214
162	Importance of the Metal–Oxide Interface in Catalysis: In Situ Studies of the Water–Gas Shift Reaction by Ambientâ€Pressure Xâ€ray Photoelectron Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 5101-5105.	13.8	280

#	Article	IF	CITATIONS
163	Unique Properties of Ceria Nanoparticles Supported on Metals: Novel Inverse Ceria/Copper Catalysts for CO Oxidation and the Water-Gas Shift Reaction. Accounts of Chemical Research, 2013, 46, 1702-1711.	15.6	198
164	Characterization of Metal-Oxide Catalysts in Operando Conditions by Combining X-ray Absorption and Raman Spectroscopies in the Same Experiment. Topics in Catalysis, 2013, 56, 896-904.	2.8	16
165	Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces. Physical Chemistry Chemical Physics, 2013, 15, 12617.	2.8	189
166	Fundamental Studies of Well-Defined Surfaces of Mixed-Metal Oxides: Special Properties of MO _x /TiO ₂ (110) {M = V, Ru, Ce, or W}. Chemical Reviews, 2013, 113, 4373-4390.	47.7	77
167	Tungsten as an interface agent leading to highly active and stable copper–ceria water gas shift catalyst. Applied Catalysis B: Environmental, 2013, 132-133, 423-432.	20.2	23
168	Theoretical Studies of the Adsorption of CO and C on Ni(111) and Ni/CeO ₂ (111): Evidence of a Strong Metal–Support Interaction. Journal of Physical Chemistry C, 2013, 117, 8241-8250.	3.1	100
169	Steam Reforming of Ethanol on Ni/CeO ₂ : Reaction Pathway and Interaction between Ni and the CeO ₂ Support. ACS Catalysis, 2013, 3, 975-984.	11.2	210
170	Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2013, 135, 4149-4158.	13.7	116
171	Ethanol Photoreaction on RuO _{<i>x</i>} /Ru-Modified TiO ₂ (110). Journal of Physical Chemistry C, 2013, 117, 11149-11158.	3.1	34
172	In situ characterization of iron-promoted ceria–alumina gold catalysts during the water-gas shift reaction. Catalysis Today, 2013, 205, 41-48.	4.4	32
173	<i>In Situ</i> Imaging of Cu ₂ 0 under Reducing Conditions: Formation of Metallic Fronts by Mass Transfer. Journal of the American Chemical Society, 2013, 135, 16781-16784.	13.7	74
174	In situ time-resolved X-ray diffraction study of the synthesis of Mo ₂ C with different carburization agents. Canadian Journal of Chemistry, 2013, 91, 573-582.	1.1	22
175	Electronic Metal–Support Interactions and the Production of Hydrogen Through the Water-Gas Shift Reaction and Ethanol Steam Reforming: Fundamental Studies with Well-Defined Model Catalysts. Topics in Catalysis, 2013, 56, 1488-1498.	2.8	57
176	A New Type of Strong Metal–Support Interaction and the Production of H ₂ through the Transformation of Water on Pt/CeO ₂ (111) and Pt/CeO _{<i>x</i>} /TiO ₂ (110) Catalysts. Journal of the American Chemical Society, 2012, 134, 8968-8974.	13.7	682
177	CO oxidation on inverse Fe2O3/Au(111) model catalysts. Journal of Catalysis, 2012, 294, 216-222.	6.2	45
178	In situ characterization of Ptcatalysts supported on ceria modified TiO2 for the WGS reaction: influence of ceria loading. Physical Chemistry Chemical Physics, 2012, 14, 2192-2202.	2.8	34
179	Special Chemical Properties of RuO _{<i>x</i>} Nanowires in RuO _{<i>x</i>} /TiO ₂ (110): Dissociation of Water and Hydrogen Production. Journal of Physical Chemistry C, 2012, 116, 4767-4773.	3.1	25
180	Nanopattering in CeO _{<i>x</i>} /Cu(111): A New Type of Surface Reconstruction and Enhancement of Catalytic Activity. Journal of Physical Chemistry Letters, 2012, 3, 839-843.	4.6	38

#	Article	lF	CITATIONS
181	Synchrotron Techniques for In Situ Catalytic Studies: Capabilities, Challenges, and Opportunities. ACS Catalysis, 2012, 2, 2269-2280.	11.2	107
182	Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions. Physical Chemistry Chemical Physics, 2012, 14, 427-438.	2.8	89
183	CO ₂ Activation and Methanol Synthesis on Novel Au/TiC and Cu/TiC Catalysts. Journal of Physical Chemistry Letters, 2012, 3, 2275-2280.	4.6	129
184	Effect of Ceria on Gold–Titania Catalysts for the Water–Gas Shift Reaction: Fundamental Studies for Au/CeO _{<i>x</i>} /TiO ₂ (110) and Au/CeO _{<i>x</i>} /TiO ₂ Powders. Journal of Physical Chemistry C, 2012, 116, 23547-23555.	3.1	61
185	Exploring the Structural and Electronic Properties of Pt/Ceria-Modified TiO ₂ and Its Photocatalytic Activity for Water Splitting under Visible Light. Journal of Physical Chemistry C, 2012, 116, 14062-14070.	3.1	69
186	In situ studies of CeO2-supported Pt, Ru, and Pt–Ru alloy catalysts for the water–gas shift reaction: Active phases and reaction intermediates. Journal of Catalysis, 2012, 291, 117-126.	6.2	133
187	CO Oxidation on Inverse CeO _{<i>x</i>} /Cu(111) Catalysts: High Catalytic Activity and Ceria-Promoted Dissociation of O ₂ . Journal of the American Chemical Society, 2011, 133, 3444-3451.	13.7	241
188	Identification of 5–7 Defects in a Copper Oxide Surface. Journal of the American Chemical Society, 2011, 133, 11474-11477.	13.7	80
189	Reactivity of Transition Metals (Pd, Pt, Cu, Ag, Au) toward Molecular Hydrogen Dissociation: Extended Surfaces versus Particles Supported on TiC(001) or Small Is Not Always Better and Large Is Not Always Bad. Journal of Physical Chemistry C, 2011, 115, 11666-11672.	3.1	82
190	Theoretical Study of the Interaction of CO on TiC(001) and Au Nanoparticles Supported on TiC(001): Probing the Nature of the Au/TiC Interface. Journal of Physical Chemistry C, 2011, 115, 22495-22504.	3.1	17
191	Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis: Advantages and Limitations. Journal of Physical Chemistry C, 2011, 115, 17884-17890.	3.1	92
192	CeO ₂ ↔ CuO _{<i>x</i>} Interactions and the Controlled Assembly of CeO ₂ (111) and CeO ₂ (100) Nanoparticles on an Oxidized Cu(111) Substrate. Journal of Physical Chemistry C, 2011, 115, 23062-23066.	3.1	44
193	Morphological and Structural Changes during the Reduction and Reoxidation of CuO/CeO ₂ and Ce _{1–<i>x</i>} Cu _{<i>x</i>} O ₂ Nanocatalysts: <i>In Situ</i> Studies with Environmental TEM, XRD, and XAS, lournal of Physical Chemistry C, 2011, 115, 13851-13859.	3.1	55
194	On the dissociation of molecular hydrogen by Au supported on transition metal carbides: choice of the most active support. Physical Chemistry Chemical Physics, 2011, 13, 6865.	2.8	31
195	Interaction of SO2 with Cu/TiC(001) and Au/TiC(001): Toward a new family of DeSOx catalysts. Journal of Catalysis, 2011, 279, 352-360.	6.2	28
196	Frontiers in Catalysis and Energy Science. ChemCatChem, 2011, 3, 1661-1662.	3.7	4
197	Water–Gas Shift and CO Methanation Reactions over Ni–CeO2(111) Catalysts. Topics in Catalysis, 2011, 54, 34-41.	2.8	109
198	Preface: 5th San Luis Pan-American Conference on Surfaces, Interfaces and Catalysis. Topics in Catalysis, 2011, 54, 1-3.	2.8	5

#	Article	IF	CITATIONS
199	Determining the Behavior of RuO _{<i>x</i>} Nanoparticles in Mixedâ€Metal Oxides: Structural and Catalytic Properties of RuO ₂ /TiO ₂ (110) Surfaces. Angewandte Chemie - International Edition, 2011, 50, 10198-10202.	13.8	48
200	Novel Au–TiC catalysts for CO oxidation and desulfurization processes. Catalysis Today, 2011, 166, 2-9.	4.4	37
201	Gold-based catalysts for the water–gas shift reaction: Active sites and reaction mechanismâ~†. Catalysis Today, 2011, 160, 3-10.	4.4	118
202	Supported Gold in CO Oxidation, the Water-Gas Shift, and DeSOx Reactions. Catalytic Science Series, 2011, , 217-245.	0.0	0
203	Hydrogenation Reactions on Au/TiC(001): Effects of AuC Interactions on the Dissociation of H ₂ . ChemCatChem, 2010, 2, 1219-1222.	3.7	39
204	Desulfurization Reactions on Surfaces of Metal Carbides: Photoemission and Density–Functional Studies. Topics in Catalysis, 2010, 53, 393-402.	2.8	27
205	Probing the reaction intermediates for the water–gas shift over inverse CeOx/Au(111) catalysts. Journal of Catalysis, 2010, 271, 392-400.	6.2	110
206	High Activity of Ce _{1â^'<i>x</i>} Ni _{<i>x</i>} O _{2â^'<i>y</i>} for H ₂ Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal–Oxide Interactions. Angewandte Chemie - International Edition, 2010, 49, 9680-9684.	13.8	108
207	Inverse oxide/metal catalysts: A versatile approach for activity tests and mechanistic studies. Surface Science, 2010, 604, 241-244.	1.9	135
208	Gold, Copper, and Platinum Nanoparticles Dispersed on CeO _{<i>x</i>} /TiO ₂ (110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level. Journal of the American Chemical Society, 2010, 132, 356-363.	13.7	247
209	Destruction of SO ₂ on Au and Cu Nanoparticles Dispersed on MgO(100) and CeO ₂ (111). Journal of Physical Chemistry A, 2010, 114, 3802-3810.	2.5	30
210	Unraveling the Active Site in Copperâ^'Ceria Systems for the Waterâ^'Gas Shift Reaction: In Situ Characterization of an Inverse Powder CeO _{2â^'<i>x</i>} /CuOâ^'Cu Catalyst. Journal of Physical Chemistry C, 2010, 114, 3580-3587.	3.1	71
211	Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001Ì,,). Physical Chemistry Chemical Physics, 2010, 12, 9909.	2.8	442
212	Theoretical Analysis of the Adsorption of Late Transition-Metal Atoms on the (001) Surface of Early Transition-Metal Carbides. Journal of Physical Chemistry C, 2010, 114, 1622-1626.	3.1	25
213	Autocatalytic Reduction of a Cu ₂ O/Cu(111) Surface by CO: STM, XPS, and DFT Studies. Journal of Physical Chemistry C, 2010, 114, 17042-17050.	3.1	84
214	In Situ XRD Studies of ZnO/GaN Mixtures at High Pressure and High Temperature: Synthesis of Zn-Rich (Ga _{1â^'<i>x</i>} Zn _{<i>x</i>})(N _{1â^'<i>x</i>} O _{<i>x</i>}) Photocatalysts. Journal of Physical Chemistry C, 2010, 114, 1809-1814.	3.1	71
215	Inverse CeO ₂ /CuO Catalyst As an Alternative to Classical Direct Configurations for Preferential Oxidation of CO in Hydrogen-Rich Stream. Journal of the American Chemical Society, 2010, 132, 34-35.	13.7	278
216	A theoretical insight into the catalytic effect of a mixed-metal oxide at the nanometer level: The case of the highly active metal/CeOx/TiO2(110) catalysts. Journal of Chemical Physics, 2010, 132, 104703.	3.0	93

#	Article	IF	CITATIONS
217	Role of Auâ^'C Interactions on the Catalytic Activity of Au Nanoparticles Supported on TiC(001) toward Molecular Oxygen Dissociation. Journal of the American Chemical Society, 2010, 132, 3177-3186.	13.7	88
218	Unusual Physical and Chemical Properties of Ni in Ce _{1â^'<i>x</i>} Ni _{<i>x</i>} O _{2â^'<i>y</i>} Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction. Journal of Physical Chemistry C, 2010, 114, 12689-12697.	3.1	151
219	Catalysis and the nature of mixed-metal oxides at the nanometer level: special properties of MOx/TiO2(110) {M= V, W, Ce} surfaces. Physical Chemistry Chemical Physics, 2010, 12, 9557.	2.8	64
220	Role of C and P Sites on the Chemical Activity of Metal Carbides and Phosphides: From Clusters to Single-Crystal Surfaces. , 2010, , 117-132.		3
221	High catalytic activity of Au/CeO _x /TiO ₂ (110) controlled by the nature of the mixed-metal oxide at the nanometer level. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4975-4980.	7.1	257
222	Water–gas-shift reaction on a Ni2P(001) catalyst: Formation of oxy-phosphides and highly active reaction sites. Journal of Catalysis, 2009, 262, 294-303.	6.2	107
223	Waterâ€Gas Shift Reaction on a Highly Active Inverse CeO _{<i>x</i>} /Cu(111) Catalyst: Unique Role of Ceria Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 8047-8050.	13.8	262
224	In-situ characterization of water–gas shift catalysts using time-resolved X-ray diffraction. Catalysis Today, 2009, 145, 188-194.	4.4	32
225	High Waterâ^'Gas Shift Activity in TiO ₂ (110) Supported Cu and Au Nanoparticles: Role of the Oxide and Metal Particle Size. Journal of Physical Chemistry C, 2009, 113, 7364-7370.	3.1	223
226	Desulfurization of Thiophene on Au/TiC(001): Auâ^'C Interactions and Charge Polarization. Journal of the American Chemical Society, 2009, 131, 8595-8602.	13.7	70
227	Effect of the Support on the Electronic Structure of Au Nanoparticles Supported on Transition Metal Carbides: Choice of the Best Substrate for Au Activation. Journal of Physical Chemistry C, 2009, 113, 19994-20001.	3.1	28
228	One-Dimensional Ceria as Catalyst for the Low-Temperature Waterâ^'Gas Shift Reaction. Journal of Physical Chemistry C, 2009, 113, 21949-21955.	3.1	68
229	Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides. Journal of Chemical Physics, 2009, 130, 244706.	3.0	17
230	In Situ Characterization of CuFe ₂ O ₄ and Cu/Fe ₃ O ₄ Waterâ [~] Gas Shift Catalysts. Journal of Physical Chemistry C, 2009, 113, 14411-14417.	3.1	133
231	Interaction of CO with OH on Au(111): HCOO, CO ₃ , and HOCO as Key Intermediates in the Water-Gas Shift Reaction. Journal of Physical Chemistry C, 2009, 113, 19536-19544.	3.1	93
232	Preparation of (Ga _{1â[^]<i>x</i>} Zn _{<i>x</i>})(N _{1â[^]<i>x</i>} O _{<i>x</i>}) Photocatalysts from the Reaction of NH ₃ with Ga ₂ O ₃ /ZnO and ZnGa ₂ O ₄ : In Situ Time-Resolved XRD and XAFS Studies. Journal of Physical	3.1	63
233	Chemistry C, 2009, 113, 3650-3659. Ceria-based Catalysts for the Production of H2 Through the Water-gas-shift Reaction: Time-resolved XRD and XAFS Studies. Topics in Catalysis, 2008, 49, 81-88.	2.8	37
234	Dissociation of SO ₂ on Au/TiC(001): Effects of Au–C Interactions and Charge Polarization. Angewandte Chemie - International Edition, 2008, 47, 6685-6689.	13.8	69

#	Article	IF	CITATIONS
235	STM study of the growth of cerium oxide nanoparticles on Au(111). Surface Science, 2008, 602, 3272-3278.	1.9	52
236	Catalyst size matters: Tuning the molecular mechanism of the water–gas shift reaction on titanium carbide based compounds. Journal of Catalysis, 2008, 260, 103-112.	6.2	81
237	N Doping of Rutile TiO ₂ (110) Surface. A Theoretical DFT Study. Journal of Physical Chemistry C, 2008, 112, 2624-2631.	3.1	107
238	In Situ Time-Resolved Characterization of Niâ^'MoO ₂ Catalysts for the Waterâ^'Gas Shift Reaction. Journal of Physical Chemistry C, 2008, 112, 2121-2128.	3.1	18
239	Adsorbate-Driven Morphological Changes of a Gold Surface at Low Temperatures. Journal of the American Chemical Society, 2008, 130, 17272-17273.	13.7	72
240	Au ↔ N Synergy and N-Doping of Metal Oxide-Based Photocatalysts. Journal of the American Chemical Society, 2008, 130, 12056-12063.	13.7	115
241	Activity of CeO _{<i>x</i>} and TiO _{<i>x</i>} Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction. Science, 2007, 318, 1757-1760.	12.6	906
242	Interaction of oxygen with TiN(001):N↔O exchange and oxidation process. Journal of Chemical Physics, 2007, 126, 244713.	3.0	51
243	Sequential transformations in assemblies based on octamolybdate clusters and 1,2-bis(4-pyridyl)ethane. New Journal of Chemistry, 2007, 31, 33-38.	2.8	37
244	STM and XPS Study of Growth of Ce on Au(111). Journal of Physical Chemistry C, 2007, 111, 3685-3691.	3.1	24
245	Density Functional Study of the Adsorption of Atomic Oxygen on the (001) Surface of Early Transition-Metal Carbides. Journal of Physical Chemistry C, 2007, 111, 1307-1314.	3.1	66
246	Effects of Hydrogen on the Reactivity of O ₂ toward Gold Nanoparticles and Surfaces. Journal of Physical Chemistry C, 2007, 111, 19001-19008.	3.1	75
247	A Systematic Density Functional Study of Molecular Oxygen Adsorption and Dissociation on the (001) Surface of Group IVâ^'VI Transition Metal Carbides. Journal of Physical Chemistry C, 2007, 111, 16982-16989.	3.1	60
248	Adsorption of gold on TiC(001): Au–C interactions and charge polarization. Journal of Chemical Physics, 2007, 127, 211102.	3.0	66
249	Reaction of NH3 with Titania:  N-Doping of the Oxide and TiN Formation. Journal of Physical Chemistry C, 2007, 111, 1366-1372.	3.1	145
250	Water-gas-shift reaction on metal nanoparticles and surfaces. Journal of Chemical Physics, 2007, 126, 164705.	3.0	216
251	Water Gas Shift Reaction on Cu and Au Nanoparticles Supported on CeO2(111) and ZnO(000): Intrinsic Activity and Importance of Support Interactions. Angewandte Chemie - International Edition, 2007, 46, 1329-1332.	13.8	447
252	Reaction of water with Ce–Au(111) and CeOx/Au(111) surfaces: Photoemission and STM studies. Surface Science, 2007, 601, 2445-2452.	1.9	57

#	Article	IF	CITATIONS
253	Gold nanoparticles on ceria: importance of O vacancies in the activation of gold. Topics in Catalysis, 2007, 44, 73-81.	2.8	85
254	InÂsitu time-resolved characterization of novel Cu–MoO2 catalysts during the water–gas shift reaction. Catalysis Letters, 2007, 113, 1-6.	2.6	31
255	A density functional theory study of the dissociation of H2 on gold clusters: Importance of fluxionality and ensemble effects. Journal of Chemical Physics, 2006, 125, 164715.	3.0	114
256	In Situ Studies of the Active Sites for the Water Gas Shift Reaction over Cuâ^'CeO2Catalysts:Â Complex Interaction between Metallic Copper and Oxygen Vacancies of Ceria. Journal of Physical Chemistry B, 2006, 110, 428-434.	2.6	415
257	Parametric Quantum Methods in Modeling Metal Oxide Nanoclusters and Surfaces. , 2006, , 217-245.		Ο
258	Water-Gas-Shift Reaction on Molybdenum Carbide Surfaces:  Essential Role of the Oxycarbide. Journal of Physical Chemistry B, 2006, 110, 19418-19425.	2.6	202
259	Oxide Nanomaterials in Ceramics. , 2006, , 683-713.		Ο
260	On Aqueous Interfacial Thermodynamics and the Design of Metal-Oxide Nanostructures. , 2006, , 49-78.		0
261	Synthesis of Metal-Oxide Nanoparticles: Gas-Solid Transformations. , 2006, , 119-134.		1
262	Unravelling the Origin of the High-Catalytic Activity of Supported Au:Â A Density-Functional Theory-Based Interpretation. Journal of the American Chemical Society, 2006, 128, 15600-15601.	13.7	65
263	Gas-phase Interaction of Thiophene with the Ti8C12+and Ti8C12Met-Car Clusters. Journal of Physical Chemistry B, 2006, 110, 7449-7455.	2.6	23
264	Gas Sensors. , 2006, , 411-450.		4
265	Theory of Size, Confinement, and Oxidation Effects. , 2006, , 7-47.		5
266	Synthesis of Metal-Oxide Nanoparticles: Liquid-Solid Transformations. , 2006, , 81-117.		11
267	Adsorption of Probe Molecules on Nanostructured Oxides. , 2006, , 311-334.		0
268	Chemical Properties of Oxide Nanoparticles: Surface Adsorption Studies from Gas- and Liquid-Phase Environments. , 2006, , 335-351.		2
269	Transport Properties and Oxygen Handling. , 2006, , 353-377.		2
270	Oxide Nanomaterials for the Catalytic Combustion of Hydrocarbons. , 2006, , 563-601.		0

#	Article	IF	CITATIONS
271	Chemistry of SO2 and DeSOx Processes on Oxide Nanoparticles. , 2006, , 633-650.		Ο
272	Techniques for the Study of the Electronic Properties. , 2006, , 165-183.		0
273	Post Hartree-Fock and Density Functional Theory Formalisms. , 2006, , 185-215.		0
274	Atomistic Models and Molecular Dynamics. , 2006, , 247-286.		0
275	Adsorbents. , 2006, , 381-410.		3
276	Theoretical Aspects of Oxide Particle Stability and Chemical Reactivity. , 2006, , 289-309.		0
277	Nanostructured Oxides in DeNOx Technologies. , 2006, , 603-632.		0
278	H2 Production and Fuel Cells. , 2006, , 651-681.		1
279	Nanostructured Oxides in Photo-Catalysis. , 2006, , 491-562.		8
280	Techniques for the Study of the Structural Properties. , 2006, , 137-164.		0
281	Characterization of NOx species in dehydrated and hydrated Na- and Ba-Y, FAU zeolites formed in NO2 adsorption. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 164-170.	1.7	19
282	The chemical properties of bimetallic surfaces: Importance of ensemble and electronic effects in the adsorption of sulfur and SO2. Progress in Surface Science, 2006, 81, 141-189.	8.3	77
283	Photoemission study of glycine adsorption on Cu/Au(111) interfaces. Surface Science, 2006, 600, 2113-2121.	1.9	25
284	Photovoltaic, Photoelectronic, and Electrochemical Devices Based on Metal-Oxide Nanoparticles and Nanostructures. , 2006, , 451-490.		3
285	N doping of TiO2(110): Photoemission and density-functional studies. Journal of Chemical Physics, 2006, 125, 094706.	3.0	127
286	Introduction the World of Oxide Nanomaterials. , 2006, , 1-5.		3
287	Sulfur adsorption and sulfidation of transition metal carbides as hydrotreating catalysts. Journal of Molecular Catalysis A, 2005, 239, 116-124.	4.8	45
288	The decomposition and chemistry of Ru3(CO)12 on TiO2(110) studied with X-ray photoelectron spectroscopy and temperature programmed desorption. Surface Science, 2005, 575, 115-124.	1.9	19

#	Article	IF	CITATIONS
289	Reaction of SO2 with Auâ^•CeO2(111): Importance of O vacancies in the activation of gold. Journal of Chemical Physics, 2005, 122, 241101.	3.0	48
290	Interaction of oxygen with ZrC(001) and VC(001): Photoemission and first-principles studies. Physical Review B, 2005, 72, .	3.2	50
291	The structural and electronic properties of nanostructured Ce1â^'xâ^'yZrxTbyO2 ternary oxides: Unusual concentration of Tb3+ and metal↔oxygen↔metal interactions. Journal of Chemical Physics, 2005, 122, 154711.	3.0	32
292	Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface:Â The Importance of Ensemble Effect. Journal of the American Chemical Society, 2005, 127, 14871-14878.	13.7	1,029
293	Chemical Activity of Iron in [2Fe-2S]-Protein Centers and FeS2(100) Surfaces. Journal of Physical Chemistry B, 2005, 109, 2754-2762.	2.6	18
294	A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. Journal of Chemical Physics, 2005, 122, 174709.	3.0	180
295	Ca Doping of Nanosize Ceâ ̈́Zr and Ceâ ̈́Tb Solid Solutions:Â Structural and Electronic Effects. Chemistry of Materials, 2005, 17, 4181-4193.	6.7	49
296	Theoretical Studies of Manganese and Iron Superoxide Dismutases:Â Superoxide Binding and Superoxide Oxidation. Journal of Physical Chemistry B, 2005, 109, 24502-24509.	2.6	37
297	Unusual Physical and Chemical Properties of Cu in Ce1-xCuxO2Oxides. Journal of Physical Chemistry B, 2005, 109, 19595-19603.	2.6	262
298	In situtime-resolved characterization of Au–CeO2 and AuOx–CeO2 catalysts during the water-gas shift reaction: Presence of Au and O vacancies in the active phase. Journal of Chemical Physics, 2005, 123, 221101.	3.0	115
299	Desulfurization Reactions on Ni2P(001) and α-Mo2C(001) Surfaces: Complex Role of P and C Sites. Journal of Physical Chemistry B, 2005, 109, 4575-4583.	2.6	290
300	Surface Science Studies of DeNOx Catalysts. , 2005, , 211-232.		3
301	The chemical activity of metal compound nanoparticles: Importance of electronic and steric effects in M8C12 (M=Ti, V, Mo) metcars. Journal of Chemical Physics, 2004, 121, 10321-10324.	3.0	22
302	Adsorption of sulfur onTiC(001): Photoemission and first-principles studies. Physical Review B, 2004, 69, .	3.2	30
303	The interaction of oxygen with TiC(001): Photoemission and first-principles studies. Journal of Chemical Physics, 2004, 121, 465.	3.0	58
304	Activation of Gold Nanoparticles on Titania: A Novel DeSOx Catalyst. ACS Symposium Series, 2004, , 205-209.	0.5	3
305	Time-resolved Studies for the Mechanism of Reduction of Copper Oxides with Carbon Monoxide:Â Complex Behavior of Lattice Oxygen and the Formation of Suboxides. Journal of Physical Chemistry B, 2004, 108, 13667-13673.	2.6	187
306	The Ti8C12Metcar:Â A New Model Catalyst for Hydrodesulfurization. Journal of Physical Chemistry B, 2004, 108, 18796-18798.	2.6	28

#	Article	IF	CITATIONS
307	Preparation and Structural Characterization of RuS2Nanoislands on Au(111). Journal of the American Chemical Society, 2004, 126, 8886-8887.	13.7	31
308	Effects of carbon on the stability and chemical performance of transition metal carbides:â€,A density functional study. Journal of Chemical Physics, 2004, 120, 5414-5423.	3.0	102
309	Desulfurization of SO2and Thiophene on Surfaces and Nanoparticles of Molybdenum Carbide:Â Unexpected Ligand and Steric Effects. Journal of Physical Chemistry B, 2004, 108, 15662-15670.	2.6	72
310	XANES Characterization of Extremely Nanosized Metal-Carbonyl Subspecies (Me = Cr, Mn, Fe, and Co) Confined into the Mesopores of MCM-41 Materials. Journal of Physical Chemistry B, 2004, 108, 20005-20010.	2.6	42
311	Nanostructured Oxides in Chemistry:  Characterization and Properties. Chemical Reviews, 2004, 104, 4063-4104.	47.7	909
312	Reaction of CuO with hydrogen studied by using synchrotron-based x-ray diffraction. Journal of Physics Condensed Matter, 2004, 16, S3479-S3484.	1.8	25
313	The behavior of mixed-metal oxides: Physical and chemical properties of bulk Ce1â^'xTbxO2 and nanoparticles of Ce1â^'xTbxOy. Journal of Chemical Physics, 2004, 121, 5434-5444.	3.0	113
314	Adsorption and Reaction of SO2on Model Ce1Â-ÂxZrxO2(111) Catalysts. Journal of Physical Chemistry B, 2004, 108, 2931-2938.	2.6	39
315	Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study. Catalysis Letters, 2003, 91, 247-252.	2.6	129
316	Reduction of CuO in H2: In Situ Time-Resolved XRD Studies. Catalysis Letters, 2003, 85, 247-254.	2.6	228
317	The deposition of Mo nanoparticles on Au(111) from a Mo(CO)6 precursor: effects of CO on Mo–Au intermixing. Surface Science, 2003, 530, L313-L321.	1.9	22
318	Electronic and chemical properties of mixed-metal oxides: basic principles for the design of DeNOx and DeSOx catalysts. Catalysis Today, 2003, 85, 177-192.	4.4	37
319	Interaction of thiophene with stoichiometric and reduced rutile TiO2(1 1 0) surfaces: role of Ti3+ sites in desulfurization activity. Journal of Molecular Catalysis A, 2003, 202, 215-227.	4.8	48
320	A Novel Growth Mode of Mo on Au (111) from a Mo(CO)6Precursor:Â An STM Study. Journal of Physical Chemistry B, 2003, 107, 1036-1043.	2.6	40
321	Reduction of CuO and Cu2O with H2: H Embedding and Kinetic Effects in the Formation of Suboxides. Journal of the American Chemical Society, 2003, 125, 10684-10692.	13.7	490
322	Properties of CeO2and Ce1-xZrxO2Nanoparticles:Â X-ray Absorption Near-Edge Spectroscopy, Density Functional, and Time-Resolved X-ray Diffraction Studies. Journal of Physical Chemistry B, 2003, 107, 3535-3543.	2.6	199
323	Electronic and chemical properties of mixed-metal oxides: Adsorption and reaction of NO on SrTiO3(100). Journal of Chemical Physics, 2003, 118, 6562-6571.	3.0	39
324	The behavior of mixed-metal oxides: Structural and electronic properties of Ce1â^'xCaxO2 and Ce1â^'xCaxO2â^'x. Journal of Chemical Physics, 2003, 119, 5659-5669.	3.0	112

#	ARTICLE	IF	CITATIONS
325	Coverage Effects and the Nature of the Metalâ `Sulfur Bond in S/Au(111):Â High-Resolution Photoemission and Density-Functional Studies. Journal of the American Chemical Society, 2003, 125, 276-285.	13.7	179
326	Molecular Level Study of the Formation and the Spread of MoO3on Au (111) by Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society, 2003, 125, 8059-8066.	13.7	81
327	Computational Study of the Geometry and Properties of the Metcars Ti8C12and Mo8C12. Journal of Physical Chemistry A, 2003, 107, 9344-9356.	2.5	29
328	SnO2 Nanoribbons as NO2 Sensors:  Insights from First Principles Calculations. Nano Letters, 2003, 3, 1025-1028.	9.1	186
329	Physical and Chemical Properties of MoP, Ni2P, and MoNiP Hydrodesulfurization Catalysts:Â Time-Resolved X-ray Diffraction, Density Functional, and Hydrodesulfurization Activity Studies. Journal of Physical Chemistry B, 2003, 107, 6276-6285.	2.6	198
330	Chemical reactivity of metcar Ti8C12, nanocrystal Ti14C13 and a bulk TiC(001) surface: A density functional study. Journal of Chemical Physics, 2003, 118, 7737-7740.	3.0	53
331	Interaction of sulfur dioxide with titanium–carbide nanoparticles and surfaces: A density functional study. Journal of Chemical Physics, 2003, 119, 10895-10903.	3.0	30
332	Interaction of CO, O, and S with metal nanoparticles on Au(111): A theoretical study. Physical Review B, 2003, 67, .	3.2	37
333	First-principles study of the adsorption of sulfur on Pt(111): S core-level shifts and the nature of the Pt-S bond. Physical Review B, 2002, 65, .	3.2	48
334	Interaction of sulphur with bimetallic surfaces: Effects of structural, electronic and chemical properties. Chemical Physics of Solid Surfaces, 2002, 10, 466-494.	0.3	1
335	Adsorption of Methanethiol on Stoichiometric and Defective TiO2(110) Surfaces:Â A Combined Experimental and Theoretical Study. Journal of Physical Chemistry B, 2002, 106, 9883-9891.	2.6	41
336	Experimental and Theoretical Studies on the Reaction of H2 with NiO:  Role of O Vacancies and Mechanism for Oxide Reduction. Journal of the American Chemical Society, 2002, 124, 346-354.	13.7	322
337	Activation of Gold on Titania:Â Adsorption and Reaction of SO2on Au/TiO2(110). Journal of the American Chemical Society, 2002, 124, 5242-5250.	13.7	242
338	Importance of O vacancies in the behavior of oxide surfaces: Adsorption of sulfur onTiO2(110). Physical Review B, 2002, 65, .	3.2	54
339	Structural and electronic properties of PbTiO3, PbZrO3, and PbZr0.5Ti0.5O3: First-principles density-functional studies. Journal of Chemical Physics, 2002, 117, 2699-2709.	3.0	63
340	Chemistry of sulfur-containing molecules on Au(): thiophene, sulfur dioxide, and methanethiol adsorption. Surface Science, 2002, 505, 295-307.	1.9	133
341	Orbital-band interactions and the reactivity of molecules on oxide surfaces: from explanations to predictions. Theoretical Chemistry Accounts, 2002, 107, 117-129.	1.4	60
342	Synthesis, electronic and chemical properties of MoOx clusters on Au(111). Surface Science, 2002, 512, L353-L360.	1.9	22

#	Article	IF	CITATIONS
343	Reduction of CoMoO4 and NiMoO4: in situ Time-Resolved XRD Studies. Catalysis Letters, 2002, 82, 103-109.	2.6	44
344	Sulfur Adsorption and Reaction with a TiO2(110) Surface: O↔S Exchange and Sulfide Formation. Collection of Czechoslovak Chemical Communications, 2001, 66, 1149-1163.	1.0	12
345	Chemistry of NO2on Oxide Surfaces: Formation of NO3on TiO2(110) and NO2↔O Vacancy Interactions. Journal of the American Chemical Society, 2001, 123, 9597-9605.	13.7	226
346	Studies on the behavior of mixed-metal oxides: Adsorption of CO and NO on MgO(100), NixMg1â^'xO(100), and CrxMg1â^'xO(100). Journal of Chemical Physics, 2001, 114, 4186-4195.	3.0	45
347	Fundamental studies of desulfurization processes: reaction of methanethiol on ZnO and Cs/ZnO. Surface Science, 2001, 479, 155-168.	1.9	40
348	Formation of Mo and MoSx nanoparticles on Au(111) from Mo(CO)6 and S2 precursors: electronic and chemical properties. Surface Science, 2001, 490, 315-326.	1.9	41
349	Electronic and Chemical Properties of Ce0.8Zr0.2O2(111) Surfaces:Â Photoemission, XANES, Density-Functional, and NO2Adsorption Studies. Journal of Physical Chemistry B, 2001, 105, 7762-7770.	2.6	118
350	DeNOxReactions on MgO(100), ZnxMg1-xO(100), CrxMg1-xO(100), and Cr2O3(0001):Â Correlation between Electronic and Chemical Properties of Mixed-Metal Oxides. Journal of Physical Chemistry B, 2001, 105, 5497-5505.	2.6	41
351	Chemistry of SO2 and NO2 on ZnO(0001)-Zn and ZnO powders: changes in reactivity with surface structure and composition. Journal of Molecular Catalysis A, 2001, 167, 47-57.	4.8	38
352	Interaction of sulfur with TiO2(1 1 0): photoemission and density-functional studies. Chemical Physics Letters, 2001, 336, 377-384.	2.6	46
353	Reaction of SO2 with pure and metal-doped MgO: Basic principles for the cleavage of S–O bonds. Journal of Chemical Physics, 2001, 115, 10914-10926.	3.0	47
354	Density functional studies on the adsorption and decomposition of SO2 on Cu(100). Journal of Chemical Physics, 2001, 115, 454-465.	3.0	51
355	Interaction of NO and NO2 with MgO(1 0 0): photoemission and density-functional studies. Chemical Physics Letters, 2000, 330, 475-483.	2.6	51
356	Reaction of NO2 with Zn and ZnO:  Photoemission, XANES, and Density Functional Studies on the Formation of NO3. Journal of Physical Chemistry B, 2000, 104, 319-328.	2.6	371
357	Characterization of oxide catalysts using time-resolved XRD and XANES: Properties of pure and sulfided CoMoO4 and NiMoO4. Studies in Surface Science and Catalysis, 2000, , 2795-2800.	1.5	7
358	Interaction of sulfur with Pt(111) and Sn/Pt(111): Effects of coverage and metal–metal bonding on reactivity toward sulfur. Journal of Chemical Physics, 2000, 113, 11284-11292.	3.0	50
359	Chemistry of NO2 on Mo(110): decomposition reactions and formation of MoO2. Surface Science, 2000, 457, 254-266.	1.9	46
360	Chemistry of thiophene on Mo(110), MoCx and MoSx surfaces: photoemission studies. Surface Science, 2000. 457. L413-L420.	1.9	54

#	Article	IF	CITATIONS
361	Studies on the Behavior of Mixed-Metal Oxides and Desulfurization:Â Reaction of H2S and SO2with Cr2O3(0001), MgO(100), and CrxMg1-xO(100). Journal of the American Chemical Society, 2000, 122, 12362-12370.	13.7	75
362	Studies on the Behavior of Mixed-Metal Oxides:Â Structural, Electronic, and Chemical Properties of β-FeMoO4. Journal of Physical Chemistry B, 2000, 104, 8145-8152.	2.6	49
363	Chemistry of NO2and SO2on Ice Layers and H2O/Zn Interfaces:Â Photoemission Studies on the Formation of Acid Water and Metal Corrosion. Langmuir, 2000, 16, 10287-10293.	3.5	14
364	Chemistry of NO2 on CeO2 and MgO: Experimental and theoretical studies on the formation of NO3. Journal of Chemical Physics, 2000, 112, 9929-9939.	3.0	104
365	Chemistry of SO2, H2S, and CH3SH on Carbide-Modified Mo(110) and Mo2C Powders:Â Photoemission and XANES Studies. Journal of Physical Chemistry B, 2000, 104, 11515-11521.	2.6	64
366	Phase transformations and electronic properties in mixed-metal oxides: Experimental and theoretical studies on the behavior of NiMoO4 and MgMoO4. Journal of Chemical Physics, 2000, 112, 935-945.	3.0	111
367	Interaction of SO2with MgO(100) and Cu/MgO(100):Â Decomposition Reactions and the Formation of SO3and SO4. Journal of Physical Chemistry B, 2000, 104, 7439-7448.	2.6	77
368	Adsorption and Decomposition of H2S on MgO(100), NiMgO(100), and ZnO(0001) Surfaces:Â A First-Principles Density Functional Study. Journal of Physical Chemistry B, 2000, 104, 3630-3638.	2.6	159
369	Reaction of H2S with MgO(100) and Cu/MgO(100) surfaces: Band-gap size and chemical reactivity. Journal of Chemical Physics, 1999, 111, 8077-8087.	3.0	77
370	Reaction of S2 and SO2 with Pd/Rh(111) surfaces: Effects of metal–metal bonding on sulfur poisoning. Journal of Chemical Physics, 1999, 110, 3138-3147.	3.0	44
371	Characterization of Mixed-Metal Oxides Using Synchrotron-Based Time-Resolved x-ray Diffraction and x-ray Absorption Spectroscopy. Materials Research Society Symposia Proceedings, 1999, 590, 113.	0.1	0
372	Interaction of SO2 with CeO2 and Cu/CeO2 catalysts: photoemission, XANES and TPD studies. Catalysis Letters, 1999, 62, 113-119.	2.6	123
373	Interaction of Sulfur with Well-Defined Metal and Oxide Surfaces:  Unraveling the Mysteries behind Catalyst Poisoning and Desulfurization. Accounts of Chemical Research, 1999, 32, 719-728.	15.6	265
374	Reaction of SO2with Cesium and Cesium-Promoted ZnO and MoO2. Journal of Physical Chemistry B, 1999, 103, 1966-1976.	2.6	25
375	Chemistry of Thiophene on ZnO, S/ZnO, and Cs/ZnO Surfaces:  Effects of Cesium on Desulfurization Processes. Journal of Physical Chemistry B, 1999, 103, 5550-5559.	2.6	49
376	Reaction of H2and H2S with CoMoO4and NiMoO4:Â TPR, XANES, Time-Resolved XRD, and Molecular-Orbital Studies. Journal of Physical Chemistry B, 1999, 103, 770-781.	2.6	110
377	Chemistry of SO2 on Mo(110), MoO2/Mo(110) and Cs/Mo(110) surfaces: effects of O and Cs on the formation of SO3 and SO4 species. Surface Science, 1999, 426, 319-335.	1.9	36
378	Adsorption of NO2 on Rh(111) and Pd/Rh(111): photoemission studies. Surface Science, 1999, 436, L683-L690.	1.9	64

#	Article	IF	CITATIONS
379	Reaction of SO2 with ZnO(0001Ì,,)–O and ZnO powders: photoemission and XANES studies on the formation of SO3 and SO4. Surface Science, 1999, 442, 400-412.	1.9	78
380	A Prelude to Surface Chemical Reaction:  Imaging the Induction Period of Sulfur Interaction with a Strained Cu Layer. Journal of Physical Chemistry B, 1999, 103, 10557-10561.	2.6	29
381	Experimental Investigations of the Interaction of SO2 with MgO. Materials Research Society Symposia Proceedings, 1999, 590, 189.	0.1	3
382	Title is missing!. Catalysis Letters, 1998, 51, 85-93.	2.6	41
383	A comparison of the reaction of S2 with metallic copper, Cu2O and Cu/ZnO: electronic properties and reactivity of copper. Surface Science, 1998, 415, L1065-L1073.	1.9	16
384	Chemistry of SO2 on Ru(001): formation of SO3 and SO4. Surface Science, 1998, 418, 8-21.	1.9	28
385	The adsorption of sulfur on Rh(111) and Cu/Rh(111) surfaces. Journal of Chemical Physics, 1998, 108, 3064-3073.	3.0	24
386	Surface Chemistry of SO2 on Zn and ZnO:  Photoemission and Molecular Orbital Studies. Journal of Physical Chemistry B, 1998, 102, 7033-7043.	2.6	64
387	Surface Chemistry of SO2on Sn and Sn/Pt(111) Alloys:Â Effects of Metalâ~'Metal Bonding on Reactivity toward Sulfur. Journal of the American Chemical Society, 1998, 120, 11149-11157.	13.7	86
388	Electronic Properties and Phase Transformations in CoMoO4and NiMoO4:Â XANES and Time-Resolved Synchrotron XRD Studies. Journal of Physical Chemistry B, 1998, 102, 1347-1355.	2.6	138
389	Reaction of H2S and S2 with Metal/Oxide Surfaces:  Band-Gap Size and Chemical Reactivity. Journal of Physical Chemistry B, 1998, 102, 5511-5519.	2.6	143
390	Reaction of S2 and H2S with Sn/Pt(111) surface alloys: Effects of metal–metal bonding on reactivity towards sulfur. Journal of Chemical Physics, 1998, 109, 4052-4062.	3.0	43
391	H2S adsorption on chromium, chromia, and gold/chromia surfaces: Photoemission studies. Journal of Chemical Physics, 1997, 107, 9146-9156.	3.0	44
392	Interactions between sulfur and platinum in bimetallic surfaces: Reaction of S2 with Pt–Al alloys. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1608-1612.	2.1	7
393	Interaction of Hydrogen and Thiophene with Ni/MoS2and Zn/MoS2Surfaces:Â A Molecular Orbital Study. Journal of Physical Chemistry B, 1997, 101, 7524-7534.	2.6	80
394	Properties of Pure and Sulfided NiMoO4 and CoMoO4 Catalysts: Tpr, Xanes and Time-Resolved XRD Studdzs. Materials Research Society Symposia Proceedings, 1997, 497, 41.	0.1	0
395	Thermal Stability of Ultrathin Cr Films on Pt(111). Journal of Physical Chemistry B, 1997, 101, 4588-4596.	2.6	13
396	Adsorption of Sulfur on Ag/Al2O3 and Zn/Al2O3 Surfaces:  Thermal Desorption, Photoemission, and Molecular Orbital Studies. Journal of Physical Chemistry B, 1997, 101, 3187-3195.	2.6	13

#	Article	IF	CITATIONS
397	Reaction of S2 with ZnO and Cu/ZnO Surfaces:  Photoemission and Molecular Orbital Studies. Journal of Physical Chemistry B, 1997, 101, 10860-10869.	2.6	53
398	Repulsive Interactions between Au and S on Mo(110) and Rh(111):Â An Experimental and Theoretical Study. The Journal of Physical Chemistry, 1996, 100, 3799-3808.	2.9	29
399	The bonding of sulfur to a Pt(111) surface: photoemission and molecular orbital studies. Chemical Physics Letters, 1996, 251, 13-19.	2.6	76
400	Interaction of sulfur and bimetallic surfaces: Feâ€promoted sulfidation of Mo(110). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 1609-1613.	2.1	9
401	Interaction of Zinc with Transition-Metal Surfaces:Â Electronic and Chemical Perturbations Induced by Bimetallic Bonding. The Journal of Physical Chemistry, 1996, 100, 381-389.	2.9	56
402	Interaction of Sulfur with Au/Pt(111) and Ag/Pt(111) Surfaces:Â Photoemission Studies. The Journal of Physical Chemistry, 1996, 100, 15494-15502.	2.9	35
403	Interaction of Silver, Cesium, and Zinc with Alumina Surfaces:Â Thermal Desorption and Photoemission Studies. The Journal of Physical Chemistry, 1996, 100, 18240-18248.	2.9	63
404	The interaction of sulfur with Cu/Pt(111) and Zn/Pt(111) surfaces: copper-promoted sulfidation of platinum. Catalysis Letters, 1995, 32, 345-355.	2.6	20
405	Adsorption of sulfur on bimetallic surfaces: Formation of copper sulfides on Pt(111) and Ru(001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 1569-1573.	2.1	13
406	Chemical and electronic properties of Pt in bimetallic surfaces: Photoemission and COâ€chemisorption studies for Zn/Pt(111). Journal of Chemical Physics, 1995, 102, 4279-4289.	3.0	66
407	Reaction of S2 with NM/Mo(110) (NM = Cu or Ag) Surfaces: Poisoning of Bimetallic Bonding and Noble-Metal-Promoted Sulfidation of Mo. The Journal of Physical Chemistry, 1995, 99, 9567-9575.	2.9	35
408	Chemical properties of Zn on Ru(001): Coadsorption with Cs, O, Cu, and Au. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 2153-2158.	2.1	3
409	Decomposition of NO2 on metal surfaces: Oxidation of Ag, Zn, and Cu films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 2140-2144.	2.1	44
410	Photoemission studies of zincâ€noble metal alloys: Zn–Cu, Zn–Ag, and Zn–Au films on Ru(001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 1998-2002.	2.1	13
411	Metal–metal bonding on surfaces: Zn–Au on Ru(001). Journal of Chemical Physics, 1992, 97, 9427-9439.	3.0	34
412	Electron donor–electron acceptor interactions in surface metal–metal bonds: The Cu/Re(0001) and Pd/Re(0001) systems. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2540-2545.	2.1	41
413	Electronic and chemical interactions between boron and carbon monoxide on Ru(0001). Journal of Chemical Physics, 1992, 96, 740-747.	3.0	4
414	Infrared vibrational studies of CO adsorption on Cu/Pt(111) and CuPt(111) surfaces. Journal of Chemical Physics, 1992, 96, 7814-7825.	3.0	60

#	Article	IF	CITATIONS
415	Synthesis of boron nitride ultrathin films: The bonding and chemistry of ammonia and hydrazine on Ru(0001) and B/Ru(0001) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 955-959.	2.1	5
416	Molecular Precursors to Boron Nitride then Films: the Reactions of Diborane with Ammonia and with Hydrazine on Ru(0001). Materials Research Society Symposia Proceedings, 1991, 250, 131.	0.1	0
417	Electronic interactions in bimetallic systems: Coreâ€level binding energy shifts. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 1698-1702.	2.1	38
418	Adsorption and reaction of HCOOH on doped Cu(110): coadsorption with cesium, oxygen, and Csa + Oa. Surface Science, 1990, 236, 282-312.	1.9	60
419	Does CO2dissociatively adsorb on Cu surfaces?. Journal of Physics Condensed Matter, 1989, 1, SB149-SB160.	1.8	80
420	Adsorption of carbon monoxide carbon dioxide on clean and cesium-covered copper(110). The Journal of Physical Chemistry, 1989, 93, 5238-5248.	2.9	123
421	Lithium-Ion Battery Materials as Tunable, "Redox Non-Innocent―Catalyst Supports. ACS Catalysis, 0, , 7233-7242.	11.2	6
422	Effect of nanostructuring on the activation of CO ₂ on molybdenum carbide nanoparticles. Physical Chemistry Chemical Physics, 0, , .	2.8	7