Koushik Sen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5114725/publications.pdf Version: 2024-02-01

KOUSHIK SEN

#	Article	IF	CITATIONS
1	Understanding pre- and syn-orogenic tectonic evolution in western Himalaya through age and petrogenesis of Palaeozoic and Cenozoic granites from upper structural levels of Bhagirathi Valley, NW India. Geological Magazine, 2022, 159, 97-123.	1.5	8
2	Tectonothermal evolution of the Lohit Valley, Eastern Himalaya: New <scp>lowâ€ŧemperature</scp> thermochronological constraints. Geological Journal, 2022, 57, 537-556.	1.3	4
3	Electron Backscatter Diffraction Study of Ultrahigh-Pressure Tso Morari Eclogites (Trans-Himalayan) Tj ETQq1 1 during Exhumation. Lithosphere, 2022, 2022, .	0.784314 r 1.4	rgBT /Overlo 2
4	Forsterite reprecipitation and carbon dioxide entrapment in the lithospheric mantle during its interaction with carbonatitic melt: a case study from the Sung Valley ultramafic–alkaline–carbonatite complex, Meghalaya, NE India. Geological Magazine, 2021, 158, 475-486.	1.5	8
5	A Perspective on Rishiganga-Dhauliganga Flash Flood in the Nanda Devi Biosphere Reserve, Garhwal Himalaya, India. Journal of the Geological Society of India, 2021, 97, 335-338.	1.1	31
6	Application of anisotropy of magnetic susceptibility (AMS) in understanding regional deformation, fabric development and granite emplacement: examples from Indian cratons. Geological Society Special Publication, 2020, 489, 275-292.	1.3	4
7	Zircon U–Pb geochronology, mineral and wholeâ€rock geochemistry of the Khardung volcanics, Ladakh Himalaya, India: Implications for Late Cretaceous to Palaeogene continental arc magmatism. Geological Journal, 2020, 55, 3297-3320.	1.3	15
8	Evidence for late Quaternary brittle deformation and back thrusting within the Indus Suture Zone, Ladakh Himalaya. Tectonophysics, 2020, 792, 228597.	2.2	6
9	Petrology, geochemistry and geochronology of granites and granite gneisses in the SE Karakoram, India: Record of subduction-related and pre- to syn-kinematic magmatism in the Karakoram Fault Zone. Mineralogy and Petrology, 2020, 114, 413-434.	1.1	9
10	Characterizing anatexis in the Greater Himalayan Sequence (Kumaun, NW India) in terms of pressure, temperature, time and deformation. Lithos, 2019, 344-345, 22-50.	1.4	9
11	Age and geochemistry of the Paleoproterozoic Bhatwari Gneiss of Garhwal Lesser Himalaya, NW India: implications for the pre-Himalayan magmatic history of the Lesser Himalayan basement rocks. Geological Society Special Publication, 2019, 481, 319-339.	1.3	16
12	Migmatization and intrusion of " <scp>S</scp> â€ŧype―granites in the transâ€ <scp>H</scp> imalayan <scp>L</scp> adakh Magmatic Arc of north <scp>I</scp> ndia and their bearing on <scp>I</scp> ndoâ€ <scp>E</scp> urasian collisional tectonics. Geological Journal, 2018, 53, 1543-1556.	1.3	15
13	U-Pb geochronology and geochemistry from the Kumaun Himalaya, NW India, reveal Paleoproterozoic arc magmatism related to formation of the Columbia supercontinent. Bulletin of the Geological Society of America, 2018, 130, 1164-1176.	3.3	34
14	Detection of a weak late-stage deformation event in granitic gneiss through anisotropy of magnetic susceptibility: implications for tectonic evolution of the Bomdila Gneiss in the Arunachal Lesser Himalaya, Northeast India. Geological Magazine, 2017, 154, 476-490.	1.5	10
15	Seismotectonics of the Trans-Himalaya, Eastern Ladakh, India: Constraints from moment tensor solutions of local earthquake data. Tectonophysics, 2017, 698, 38-46.	2.2	17
16	Seismic properties of naturally deformed quartzites of the Alaknanda valley, Garhwal Himalaya, India. Journal of Earth System Science, 2015, 124, 1159-1175.	1.3	3
17	40Ar–39Ar age constraint on deformation and brittle–ductile transition of the Main Central Thrust and the South Tibetan Detachment zone from Dhauliganga valley, Garhwal Himalaya, India. Journal of Geodynamics, 2015, 88, 1-13.	1.6	20
18	Characterizing the intracrustal low velocity zone beneath northwest India–Asia collision zone. Geophysical Journal International, 2014, 199, 1338-1353.	2.4	29

KOUSHIK SEN

#	Article	IF	CITATIONS
19	Interplay of deformation and magmatism in the Pangong Transpression Zone, eastern Ladakh, India: Implications for remobilization of the trans-Himalayan magmatic arc and initiation of the Karakoram Fault. Journal of Structural Geology, 2014, 62, 13-24.	2.3	19
20	Reply to comment on "Interplay of deformation and magmatism in the Pangong Transpressional Zone, Eastern Ladakh, India: Implications for remobilization of the trans-Himalayan magmatic arc and initiation of the Karakoram Fault― Journal of Structural Geology, 2014, 65, 120-122.	2.3	1
21	Bimodal stable isotope signatures of Zildat Ophiolitic Mélange, Indus Suture Zone, Himalaya: implications for emplacement of an ophiolitic mélange in a convergent setup. International Journal of Earth Sciences, 2013, 102, 2033-2042.	1.8	15
22	Dextral transpression and late Eocene magmatism in the trans-Himalayan Ladakh Batholith (North) Tj ETQq0 0 International Journal of Earth Sciences, 2013, 102, 1895-1909.	0 rgBT /Ov 1.8	erlock 10 Tf 5 17
23	Reply to comment on "Dextral transpression and late-Eocene magmatism in the trans-Himalayan Ladakh Batholith (North India): implications for tectono-magmatic evolution of the Indo-Eurasian collisional arc― International Journal of Earth Sciences, 2013, 102, 973-975.	1.8	1
24	Exhumation history of the Karakoram fault zone mylonites: New constraints from microstructures, fluid inclusions, and 40Ar-39Ar analyses. Lithosphere, 2012, 4, 230-241.	1.4	12
25	Composite mesoscopic and magnetic fabrics of the Paleo-Proterozoic Wangtu Gneissic Complex, Himachal Himalaya, India: Implications for ductile deformation and superposed folding of the Himalayan basement rocks. Journal of Geodynamics, 2012, 61, 81-93.	1.6	14
26	Modification of fabric in pre-Himalayan granitic rocks by post-emplacement ductile deformation: insights from microstructures, AMS, and U–Pb geochronology of the Paleozoic Kinnaur Kailash Granite and associated Cenozoic leucogranites of the South Tibetan Detachment zone, Himachal High Himalaya. International Journal of Earth Sciences, 2012, 101, 761-772.	1.8	29
27	Influence of magnetic fabric anisotropy on seismic wave velocity in paramagnetic granites from NW Himalaya: Results from preliminary investigations. Journal of the Geological Society of India, 2010, 76, 322-330.	1.1	1
28	Magnetic fabric, shape preferred orientation and regional strain in granitic rocks. Journal of Structural Geology, 2006, 28, 1870-1882.	2.3	71
29	Degree of magnetic anisotropy as a strain intensity gauge in ferromagnetic granites. Journal of the Geological Society, 2005, 162, 583-586.	2.1	44
30	Pyroxenite hosted chalcopyrites from Sung valley, Meghalaya, NE India: Implications for formation of both high- and low-temperature sulphides in plume derived magma. Geological Society Special Publication, 0, , SP518-2020-183.	1.3	2