
Suresh Babu Pakala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5114517/publications.pdf Version: 2024-02-01

SUDESH RABU DAKALA

#	Article	IF	CITATIONS
1	Metastasis-associated protein 1: A potential driver and regulator of the hallmarks of cancer. Journal of Biosciences, 2022, 47, 1.	1.1	1
2	Structural and Functional Attributes of Microrchidia Family of Chromatin Remodelers. Journal of Molecular Biology, 2022, 434, 167664.	4.2	3
3	MORC2/ \hat{l}^2 -catenin signaling axis promotes proliferation and migration of breast cancer cells. , 2022, 39, .		6
4	The chromatin modifier MORC2 affects glucose metabolism by regulating the expression of lactate dehydrogenase A through a feed forward loop with câ€Myc. FEBS Letters, 2021, 595, 1289-1302.	2.8	14
5	MORC2 Interactome: Its Involvement in Metabolism and Cancer. Biophysical Reviews, 2021, 13, 507-514.	3.2	10
6	MTA1 coregulator regulates LDHA expression and function in breast cancer. Biochemical and Biophysical Research Communications, 2019, 520, 54-59.	2.1	18
7	Combined drug therapeutic strategies for the effective treatment of Triple Negative Breast Cancer. Bioscience Reports, 2018, 38, .	2.4	60
8	Design and screening of syringic acid analogues as BAX activators-An in silico approach to discover "BH3 mimetics― Computational Biology and Chemistry, 2018, 74, 49-62.	2.3	6
9	Novel Glycopyrrolidine Compounds Inhibit Human Cancer Cell Proliferation and Induce Apoptotic Mode of Cell Death. Cancer Investigation, 2017, 35, 215-224.	1.3	0
10	Bioinformatics exploration of PAK1 (P21-activated kinase-1) revealed potential network gene elements in breast invasive carcinoma. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2269-2279.	3.5	7
11	Stimulation of inducible nitric oxide by hepatitis B virus transactivator protein HBx requires MTA1 coregulator Journal of Biological Chemistry, 2016, 291, 1198.	3.4	4
12	Cytochrome P450 Monooxygenase CYP53 Family in Fungi: Comparative Structural and Evolutionary Analysis and Its Role as a Common Alternative Anti-Fungal Drug Target. PLoS ONE, 2014, 9, e107209.	2.5	59
13	MTA1 Promotes STAT3 Transcription and Pulmonary Metastasis in Breast Cancer. Cancer Research, 2013, 73, 3761-3770.	0.9	61
14	Metastasis-associated Protein 1/Histone Deacetylase 4-Nucleosome Remodeling and Deacetylase Complex Regulates Phosphatase and Tensin Homolog Gene Expression and Function. Journal of Biological Chemistry, 2012, 287, 27843-27850.	3.4	32
15	Signaling-dependent Phosphorylation of Mitotic Centromere-associated Kinesin Regulates Microtubule Depolymerization and Its Centrosomal Localization. Journal of Biological Chemistry, 2012, 287, 40560-40569.	3.4	21
16	Metastasis-associated Protein 1 Drives Tumor Cell Migration and Invasion through Transcriptional Repression of RING Finger Protein 144A. Journal of Biological Chemistry, 2012, 287, 5615-5627.	3.4	16
17	MORC2 Signaling Integrates Phosphorylation-Dependent, ATPase-Coupled Chromatin Remodeling during the DNA Damage Response. Cell Reports, 2012, 2, 1657-1669.	6.4	110
18	Metastasis-Associated Protein 1/Nucleosome Remodeling and Histone Deacetylase Complex in Cancer. Cancer Research, 2012, 72, 387-394.	0.9	102

Suresh Babu Pakala

#	Article	IF	CITATIONS
19	Lactoferrin–Endothelin-1 Axis Contributes to the Development and Invasiveness of Triple-Negative Breast Cancer Phenotypes. Cancer Research, 2011, 71, 7259-7269.	0.9	36
20	The metastasis-associated protein-1 gene encodes a host permissive factor for schistosomiasis, a leading global cause of inflammation and cancer. Hepatology, 2011, 54, 285-295.	7.3	15
21	Inflammatory response to liver fluke Opisthorchis viverrini in mice depends on host master coregulator MTA1, a marker for parasite-induced cholangiocarcinoma in humans. Hepatology, 2011, 54, 1388-1397.	7.3	19
22	MTA1 Coregulation of Transglutaminase 2 Expression and Function during Inflammatory Response. Journal of Biological Chemistry, 2011, 286, 7132-7138.	3.4	35
23	SUMOylation and SUMO-interacting Motif (SIM) of Metastasis Tumor Antigen 1 (MTA1) Synergistically Regulate Its Transcriptional Repressor Function*. Journal of Biological Chemistry, 2011, 286, 43793-43808.	3.4	36
24	Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8791-8796.	7.1	29
25	Acetylationâ€dependent oncogenic activity of metastasisâ€associated protein 1 coâ€regulator. EMBO Reports, 2010, 11, 691-697.	4.5	37
26	Arpc1b, a centrosomal protein, is both an activator and substrate of Aurora A. Journal of Cell Biology, 2010, 190, 101-114.	5.2	55
27	Carcinoembryonic Antigen Interacts with TGF-β Receptor and Inhibits TGF-β Signaling in Colorectal Cancers. Cancer Research, 2010, 70, 8159-8168.	0.9	58
28	MTA1 Coregulator Regulates LPS Response via MyD88-dependent Signaling*. Journal of Biological Chemistry, 2010, 285, 32787-32792.	3.4	33
29	Revelation of p53-independent Function of MTA1 in DNA Damage Response via Modulation of the p21 -Proliferating Cell Nuclear Antigen Pathway. Journal of Biological Chemistry, 2010, 285, 10044-10052.	3.4	54
30	Metastasis-Associated Protein 1 and Its Short Form Variant Stimulates <i>Wnt1</i> Transcription through Promoting Its Derepression from <i>Six3</i> Corepressor. Cancer Research, 2010, 70, 6649-6658.	0.9	42
31	E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17493-17498.	7.1	80
32	MTA1 Coregulator Regulates p53 Stability and Function. Journal of Biological Chemistry, 2009, 284, 34545-34552.	3.4	46
33	MicroRNA-661, a c/EBPα Target, Inhibits Metastatic Tumor Antigen 1 and Regulates Its Functions. Cancer Research, 2009, 69, 5639-5642.	0.9	81
34	PAK thread from amoeba to mammals. Journal of Cellular Biochemistry, 2009, 107, 579-585.	2.6	32
35	15(S)-HETE Production in Human Retinal Microvascular Endothelial Cells by Hypoxia: Novel Role for MEK1 in 15(S)-HETE–Induced Angiogenesis. , 2007, 48, 4930.		41
36	Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Applied Microbiology and Biotechnology, 2007, 73, 1452-1462.	3.6	92

#	Article	IF	CITATIONS
37	Influence of zinc and cobalt on expression and activity of parathion hydrolase from Flavobacterium sp. ATCC27551. Pesticide Biochemistry and Physiology, 2005, 83, 37-45.	3.6	22
38	Transposon-Like Organization of the Plasmid-Borne Organophosphate Degradation (opd) Gene Cluster Found in Flavobacterium sp. Applied and Environmental Microbiology, 2003, 69, 2533-2539	3.1	82

Cluster Found in Flavobacterium sp. Applied and Environmental Microbiology, 2003, 69, 2533-2539. 38