

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5114009/publications.pdf Version: 2024-02-01

Ιμανίς Χι

#	Article	IF	CITATIONS
1	Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells. Food Hydrocolloids, 2015, 43, 31-40.	10.7	215
2	The physicochemical stability and inÂvitro bioaccessibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloids, 2014, 35, 19-27.	10.7	208
3	Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chemistry, 2018, 239, 1210-1218.	8.2	129
4	Improved chemical stability and cellular antioxidant activity of resveratrol in zein nanoparticle with bovine serum albumin-caffeic acid conjugate. Food Chemistry, 2018, 261, 283-291.	8.2	125
5	Physicochemical stability and inÂvitro bioaccessibility of β-carotene nanoemulsions stabilized with whey protein-dextran conjugates. Food Hydrocolloids, 2017, 63, 256-264.	10.7	124
6	Development of pea protein and high methoxyl pectin colloidal particles stabilized high internal phase pickering emulsions for β-carotene protection and delivery. Food Hydrocolloids, 2021, 113, 106497.	10.7	124
7	Preparation of Gelatin Films Incorporated with Tea Polyphenol Nanoparticles for Enhancing Controlled-Release Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2015, 63, 3987-3995.	5.2	109
8	Cellular Uptake of β-Carotene from Protein Stabilized Solid Lipid Nanoparticles Prepared by Homogenization–Evaporation Method. Journal of Agricultural and Food Chemistry, 2014, 62, 1096-1104.	5.2	100
9	Controlled Release of β-Carotene in β-Lactoglobulin–Dextran-Conjugated Nanoparticles' in Vitro Digestion and Transport with Caco-2 Monolayers. Journal of Agricultural and Food Chemistry, 2014, 62, 8900-8907.	5.2	93
10	Glycosylated α-lactalbumin-based nanocomplex for curcumin: Physicochemical stability and DPPH-scavenging activity. Food Hydrocolloids, 2016, 61, 369-377.	10.7	93
11	Oxidative stability and in vitro digestion of menhaden oil emulsions with whey protein: Effects of EGCG conjugation and interfacial cross-linking. Food Chemistry, 2018, 265, 200-207.	8.2	88
12	Beta-Carotene Chemical Stability in Nanoemulsions Was Improved by Stabilized with Beta-Lactoglobulin–Catechin Conjugates through Free Radical Method. Journal of Agricultural and Food Chemistry, 2015, 63, 297-303.	5.2	82
13	Characterization of milk proteins–lutein complexes and the impact on lutein chemical stability. Food Chemistry, 2016, 200, 91-97.	8.2	80
14	Characterization of catechin-α-lactalbumin conjugates and the improvement in β-carotene retention in an oil-in-water nanoemulsion. Food Chemistry, 2016, 205, 73-80.	8.2	67
15	Fabrication of curcumin-loaded pea protein-pectin ternary complex for the stabilization and delivery of β‑carotene emulsions. Food Chemistry, 2020, 313, 126118.	8.2	67
16	Fabrication of Resveratrol-Loaded Whey Protein–Dextran Colloidal Complex for the Stabilization and Delivery of β-Carotene Emulsions. Journal of Agricultural and Food Chemistry, 2018, 66, 9481-9489.	5.2	58
17	Effects of Lipids on in Vitro Release and Cellular Uptake of β-Carotene in Nanoemulsion-Based Delivery Systems. Journal of Agricultural and Food Chemistry, 2015, 63, 10831-10837.	5.2	55
18	Fabrication of high internal phase Pickering emulsions with calcium-crosslinked whey protein nanoparticles for β-carotene stabilization and delivery. Food and Function, 2020, 11, 768-778.	4.6	54

Jiang Yi

#	Article	IF	CITATIONS
19	Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with α-lactalbumin. Food and Function, 2018, 9, 4781-4790.	4.6	53
20	Covalent conjugation with (â^')-epigallo-catechin 3-gallate and chlorogenic acid changes allergenicity and functional properties of Ara h1 from peanut. Food Chemistry, 2020, 331, 127355.	8.2	53
21	Fabrication of pea protein nanoparticles with calcium-induced cross-linking for the stabilization and delivery of antioxidative resveratrol. International Journal of Biological Macromolecules, 2020, 152, 189-198.	7.5	52
22	Development of β-Carotene-Loaded Organogel-Based Nanoemulsion with Improved <i>In Vitro</i> and <i>In Vivo</i> Bioaccessibility. Journal of Agricultural and Food Chemistry, 2017, 65, 6188-6194.	5.2	48
23	α-Lactalbumin and chitosan core–shell nanoparticles: resveratrol loading, protection, and antioxidant activity. Food and Function, 2020, 11, 1525-1536.	4.6	42
24	Fabrication of whey protein isolate-sodium alginate nanocomplex for curcumin solubilization and stabilization in a model fat-free beverage. Food Chemistry, 2021, 348, 129102.	8.2	39
25	Thermal Degradation and Isomerization of β-Carotene in Oil-in-Water Nanoemulsions Supplemented with Natural Antioxidants. Journal of Agricultural and Food Chemistry, 2016, 64, 1970-1976.	5.2	38
26	Improved Chemical Stability and Antiproliferative Activities of Curcumin-Loaded Nanoparticles with a Chitosan Chlorogenic Acid Conjugate. Journal of Agricultural and Food Chemistry, 2017, 65, 10812-10819.	5.2	38
27	Physicochemical, emulsifying, and interfacial properties of different whey protein aggregates obtained by thermal treatment. LWT - Food Science and Technology, 2021, 149, 111904.	5.2	38
28	β-Lactoglobulin–chlorogenic acid conjugate-based nanoparticles for delivery of (â~')-epigallocatechin-3-gallate. RSC Advances, 2017, 7, 21366-21374.	3.6	33
29	Effect of heat, enzymatic hydrolysis and acid-alkali treatment on the allergenicity of silkworm pupa protein extract. Food Chemistry, 2021, 343, 128461.	8.2	32
30	Identification and Characterization of a New Pecan [<i>Carya illinoinensis</i> (Wangenh.) K. Koch] Allergen, Car i 2. Journal of Agricultural and Food Chemistry, 2016, 64, 4146-4151.	5.2	29
31	Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes. Nanomaterials, 2017, 7, 349.	4.1	29
32	Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils. Food Chemistry, 2022, 377, 131942.	8.2	29
33	Preparation and characterization of gellan gum microspheres containing a cold-adapted β-galactosidase from Rahnella sp. R3. Carbohydrate Polymers, 2017, 162, 10-15.	10.2	23
34	Colloidal characteristics, emulsifying activities, and interfacial properties of α-lactalbumin–chitosan electrostatic complexes: effects of mass ratio and pH. Food and Function, 2020, 11, 1740-1753.	4.6	17
35	Purification and Characterization of a Black Walnut (<i>Juglans nigra)</i> Allergen, Jug n 4. Journal of Agricultural and Food Chemistry, 2017, 65, 454-462.	5.2	14
36	Fabrication of chitosan-gallic acid conjugate for improvement of physicochemical stability of β-carotene nanoemulsion: Impact of Mw of chitosan. Food Chemistry, 2021, 362, 130218.	8.2	13

Jiang Yi

#	Article	IF	CITATIONS
37	Structure analysis of a glycosides hydrolase family 42 cold-adapted β-galactosidase from Rahnella sp. R3. RSC Advances, 2016, 6, 37362-37369.	3.6	11
38	Investigation of binding interaction between bovine $\hat{I}\pm$ -lactalbumin and procyanidin B2 by spectroscopic methods and molecular docking. Food Chemistry, 2022, 384, 132509.	8.2	11
39	Optimization of preparation conditions and in vitro sustained-release evaluation of a novel nanoemulsion encapsulating unsaturated guluronate oligosaccharide. Carbohydrate Polymers, 2021, 264, 118047.	10.2	10
40	Identification of potential allergens in larva, pupa, moth, silk, slough and feces of domestic silkworm (Bombyx mori). Food Chemistry, 2021, 362, 130231.	8.2	10
41	Identification, characterization, and initial epitope mapping of pine nut allergen Pin k 2. Food Research International, 2016, 90, 268-274.	6.2	8
42	Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation. European Food Research and Technology, 2015, 240, 847-852.	3.3	7
43	Protection of menhaden oil from oxidation in Pickering emulsion-based delivery systems with α-lactalbumin-chitosan colloidal nanoparticle. Food and Function, 2021, 12, 11366-11377.	4.6	7
44	Influence of peroxyl radical-induced oxidation on structural characteristics, emulsifying, and foaming properties of α-lactalbumin. LWT - Food Science and Technology, 2022, 163, 113590.	5.2	5
45	Structural characteristics, emulsifying and foaming properties of laccase-crosslinked bovine α-lactalbumin mediated by caffeic acid. Food Hydrocolloids, 2022, 133, 107948.	10.7	4