Yanping Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113974/publications.pdf

Version: 2024-02-01

38	800	12	27
papers	citations	h-index	g-index
38	38	38	1124 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	DFpin: Deep learning–based protein-binding site prediction with feature-based non-redundancy from RNA level. Computers in Biology and Medicine, 2022, 142, 105216.	7.0	8
2	Spatial Distribution-based Imbalanced Undersampling. IEEE Transactions on Knowledge and Data Engineering, 2022, , 1 -1.	5.7	9
3	Two-stage segmentation network with feature aggregation and multi-level attention mechanism for multi-modality heart images. Computerized Medical Imaging and Graphics, 2022, 97, 102054.	5.8	6
4	VGHC: a variable granularity hierarchical clustering for community detection. Granular Computing, 2021, 6, 37-46.	8.0	6
5	Attention Enhanced Hierarchical Feature Representation for Three-Way Decision Boundary Processing. Lecture Notes in Computer Science, 2021, , 218-224.	1.3	O
6	Content-Enhanced Network Embedding for Academic Collaborator Recommendation. Complexity, 2021, 2021, 1-12.	1.6	3
7	DLSA: dual-learning based on self-attention for rating prediction. International Journal of Machine Learning and Cybernetics, 2021, 12, 1993.	3.6	2
8	Hierarchical Representation Learning for Attributed Networks. IEEE Transactions on Knowledge and Data Engineering, 2021, , 1-1.	5.7	7
9	Deep collaborative filtering based on user's long and short intention for Recommendation., 2021,,.		O
10	Text information classification method based on secondly fuzzy clustering algorithm. Journal of Intelligent and Fuzzy Systems, 2020, 38, 7743-7754.	1.4	4
11	An integrated deep learning framework for joint segmentation of blood pool and myocardium. Medical Image Analysis, 2020, 62, 101685.	11.6	14
12	Pyramid feature adaptation for semi-supervised cardiac bi-ventricle segmentation. Computerized Medical Imaging and Graphics, 2020, 81, 101697.	5.8	4
13	Citation Recommendation Based on Weighted Heterogeneous Information Network Containing Semantic Linking. , 2019, , .		20
14	Cardiac-DeepIED: Automatic Pixel-Level Deep Segmentation for Cardiac Bi-Ventricle Using Improved End-to-End Encoder-Decoder Network. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 7, 1-10.	3.7	33
15	Deep Learning for Diagnosis of Chronic Myocardial Infarction on Nonenhanced Cardiac Cine MRI. Radiology, 2019, 291, 606-617.	7.3	144
16	A Parameter-Free Cleaning Method for SMOTE in Imbalanced Classification. IEEE Access, 2019, 7, 23537-23548.	4.2	45
17	Image Retrieval Based on Block Motif Co-Occurrence Matrix. , 2019, , .		O
18	Voting Based Constructive Covering Algorithm. , 2019, , .		0

#	Article	IF	CITATIONS
19	Direct Segmentation-Based Full Quantification for Left Ventricle via Deep Multi-Task Regression Learning Network. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 942-948.	6.3	27
20	An end-to-end joint learning framework of artery-specific coronary calcium scoring in non-contrast cardiac CT. Computing (Vienna/New York), 2019, 101, 667-678.	4.8	9
21	A novel machine-learning algorithm to estimate the position and size of myocardial infarction for MRI sequence. Computing (Vienna/New York), 2019, 101, 653-665.	4.8	7
22	Direct Quantification for Coronary Artery Stenosis Using Multiview Learning. Lecture Notes in Computer Science, 2019, , 449-457.	1.3	9
23	Discriminative Consistent Domain Generation for Semi-supervised Learning. Lecture Notes in Computer Science, 2019, , 595-604.	1.3	9
24	Deep Regression Segmentation for Cardiac Bi-Ventricle MR Images. IEEE Access, 2018, 6, 3828-3838.	4.2	39
25	DeepMVF-RBP: Deep Multi-view Fusion Representation Learning for RNA-binding Proteins Prediction. , 2018, , .		7
26	A Novel Approach for Influence Maximization Based on Clonal Selection Theory in Social Networks. , 2018, , .		5
27	Classifying Incomplete Gene-Expression Data: Ensemble Learning with Non-Pre-Imputation Feature Filtering and Best-First Search Technique. International Journal of Molecular Sciences, 2018, 19, 3398.	4.1	1
28	Direct delineation of myocardial infarction without contrast agents using a joint motion feature learning architecture. Medical Image Analysis, 2018, 50, 82-94.	11.6	96
29	Beat-to-Beat Blood Pressure and Two-dimensional (axial and radial) Motion of the Carotid Artery Wall: Physiological Evaluation of Arterial Stiffness. Scientific Reports, 2017, 7, 42254.	3.3	16
30	DeepPPI: Boosting Prediction of Protein–Protein Interactions with Deep Neural Networks. Journal of Chemical Information and Modeling, 2017, 57, 1499-1510.	5.4	181
31	Direct Detection of Pixel-Level Myocardial Infarction Areas via a Deep-Learning Algorithm. Lecture Notes in Computer Science, 2017, , 240-249.	1.3	20
32	Complexity Analysis of Electroencephalogram Dynamics in Patients with Parkinson's Disease. Parkinson's Disease, 2017, 2017, 1-9.	1.1	36
33	Prediction of Protein-Protein Interaction By Metasample-Based Sparse Representation. Mathematical Problems in Engineering, 2015, 2015, 1-7.	1.1	0
34	MICkNN: multi-instance covering kNN algorithm. Tsinghua Science and Technology, 2013, 18, 360-368.	6.1	7
35	Community-based user domain model collaborative recommendation algorithm. Tsinghua Science and Technology, 2013, 18, 353-359.	6.1	13
36	A novel model to restrain email virus propagation. , 2012, , .		2

#	Article	IF	CITATIONS
37	Contracting community for computing maximum flow. , 2012, , .		7
38	The structural analysis of fuzzy measures. Science China Information Sciences, 2011, 54, 38-50.	4.3	4