
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Room temperature spin polarized injection in organic semiconductor. Solid State Communications, 2002, 122, 181-184.	0.9	663
2	Spatially Correlated Charge Transport in Organic Thin Film Transistors. Physical Review Letters, 2004, 92, 116802.	2.9	582
3	Ambipolar light-emitting organic field-effect transistor. Applied Physics Letters, 2004, 85, 1613-1615.	1.5	302
4	High-Mobility Ambipolar Transport in Organic Light-Emitting Transistors. Advanced Materials, 2006, 18, 1416-1420.	11.1	220
5	Supramolecular organization in ultra-thin films of α-sexithiophene on silicon dioxide. Nature Materials, 2004, 4, 81-85.	13.3	205
6	Bias-induced threshold voltages shifts in thin-film organic transistors. Applied Physics Letters, 2004, 84, 3184-3186.	1.5	189
7	Tuning Optoelectronic Properties of Ambipolar Organic Light- Emitting Transistors Using a Bulk-Heterojunction Approach. Advanced Functional Materials, 2006, 16, 41-47.	7.8	131
8	Water-gated organic field effect transistors – opportunities for biochemical sensing and extracellular signal transduction. Journal of Materials Chemistry B, 2013, 1, 3728.	2.9	131
9	Layered Distribution of Charge Carriers in Organic Thin Film Transistors. Physical Review Letters, 2010, 104, 246602.	2.9	130
10	Morphology and Field-Effect-Transistor Mobility in Tetracene Thin Films. Advanced Functional Materials, 2005, 15, 375-380.	7.8	111
11	Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism. Synthetic Metals, 2004, 146, 329-334.	2.1	104
12	J-Aggregation in α-Sexithiophene Submonolayer Films on Silicon Dioxide. Journal of the American Chemical Society, 2006, 128, 4277-4281.	6.6	99
13	Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks. Physical Chemistry Chemical Physics, 2013, 15, 3897.	1.3	82
14	Degradation of organic light-emitting diodes under different environment at high drive conditions. Organic Electronics, 2007, 8, 37-43.	1.4	78
15	Electronic transport in field-effect transistors of sexithiophene. Journal of Applied Physics, 2004, 96, 5277-5283.	1.1	74
16	Size of Electron-Hole Pairs inï€-Conjugated Systems. Physical Review Letters, 1999, 83, 1443-1446.	2.9	70
17	Nanoimprint lithography for organic electronics. Microelectronic Engineering, 2002, 61-62, 25-31.	1.1	69
18	Double layer capacitance measured by organic field effect transistor operated in water. Applied Physics Letters, 2012, 100, .	1.5	69

MAURO MURGIA

#	Article	IF	CITATIONS
19	Electrolyte-gated organic synapse transistor interfaced with neurons. Organic Electronics, 2016, 38, 21-28.	1.4	69
20	Light-emitting ambipolar organic heterostructure field-effect transistor. Synthetic Metals, 2004, 146, 237-241.	2.1	65
21	Weak intrinsic charge transfer complexes: A new route for developing wide spectrum organic photovoltaic cells. Journal of Chemical Physics, 2002, 116, 1713-1719.	1.2	60
22	Solid-state dye PV cells using inverse opal TiO2 films. Solar Energy Materials and Solar Cells, 2005, 87, 513-519.	3.0	59
23	Disorder influenced optical properties of α-sexithiophene single crystals and thin evaporated films. Chemical Physics, 1998, 227, 49-56.	0.9	54
24	Morphology Controlled Energy Transfer in Conjugated Molecular Thin Films. Advanced Materials, 2001, 13, 355-358.	11.1	54
25	Spin polarised electrodes for organic light emitting diodes. Organic Electronics, 2004, 5, 309-314.	1.4	54
26	Mechanism of dark-spot degradation of organic light-emitting devices. Applied Physics Letters, 2005, 86, 041105.	1.5	53
27	Regenerable Resistive Switching in Silicon Oxide Based Nanojunctions. Advanced Materials, 2012, 24, 1197-1201.	11.1	52
28	Patterning a Conjugated Molecular Thin Film at Submicron Scale by Modified Microtransfer Molding. Nano Letters, 2001, 1, 193-195.	4.5	51
29	Correlation between Dielectric/Organic Interface Properties and Key Electrical Parameters in PPV-based OFETs. Journal of Physical Chemistry B, 2008, 112, 10130-10136.	1.2	51
30	Stretchable Low Impedance Electrodes for Bioelectronic Recording from Small Peripheral Nerves. Scientific Reports, 2019, 9, 10598.	1.6	51
31	Electrodeposited PEDOT:Nafion Composite for Neural Recording and Stimulation. Advanced Healthcare Materials, 2019, 8, e1900765.	3.9	51
32	Interface state mapping in a Schottky barrier of the organic semiconductor terrylene. Organic Electronics, 2002, 3, 43-51.	1.4	50
33	Organic light emitting diodes with spin polarized electrodes. Journal of Applied Physics, 2003, 93, 7682-7683.	1.1	49
34	Electrical characterization of organic based transistors: stability issues. Polymers for Advanced Technologies, 2005, 16, 227-231.	1.6	48
35	Excimer Emission in Single Layer Electroluminescent Devices Based on [Ir(4,5-diphenyl-2-methylthiazolo) ₂ (5-methyl-1,10-phenanthroline)] ⁺ [PF _{ Journal of Physical Chemistry C, 2009, 113, 12517-12522.}	6 <td>ıp≫£8°.</td>	ıp≫£8°.
36	Luminescence quantum yield of molecular aggregates and excitons in α-sexithienyl thin films at variable temperature. Journal of Applied Physics, 2000, 88, 5158-5165.	1.1	43

#	Article	IF	CITATIONS
37	Investigation of the Optoelectronic Properties of Organic Light-Emitting Transistors Based on an Intrinsically Ambipolar Material. Journal of Physical Chemistry C, 2008, 112, 12993-12999.	1.5	42
38	Scaling of capacitance of PEDOT:PSS: volume <i>vs.</i> area. Journal of Materials Chemistry C, 2020, 8, 11252-11262.	2.7	42
39	Low voltage and time constant organic synapse-transistor. Organic Electronics, 2015, 21, 47-53.	1.4	40
40	Effects of Surface Chemical Composition on the Early Growth Stages of α-Sexithienyl Films on Silicon Oxide Substrates. Journal of Physical Chemistry B, 2006, 110, 258-263.	1.2	37
41	Thermal annealing effects on morphology and electrical response in ultrathin film organic transistors. Synthetic Metals, 2004, 146, 373-376.	2.1	36
42	Efficient light extraction and beam shaping from flexible, optically integrated organic light-emitting diodes. Applied Physics Letters, 2006, 88, 153514.	1.5	32
43	Transparent manganite films as hole injectors for organic light emitting diodes. Journal of Luminescence, 2004, 110, 384-388.	1.5	28
44	Magnetic properties of Cobalt thin films deposited on soft organic layers. Journal of Magnetism and Magnetic Materials, 2007, 316, e987-e989.	1.0	26
45	Ambipolar organic light-emitting transistors employing heterojunctions of n-type and p-type materials as the active layer. Journal of Physics Condensed Matter, 2006, 18, S2127-S2138.	0.7	22
46	And Yet it Moves! Microfluidics Without Channels and Troughs. Advanced Functional Materials, 2013, 23, 5543-5549.	7.8	22
47	A Bacterial Photosynthetic Enzymatic Unit Modulating Organic Transistors with Light. Advanced Electronic Materials, 2020, 6, 1900888.	2.6	19
48	Enhanced light emission efficiency and current stability by morphology control and thermal annealing of organic light emitting diode devices. Journal of Physics Condensed Matter, 2006, 18, S2139-S2147.	0.7	18
49	Photoinduced charge transfer in complex architectured films of c60 and donor-like molecules. Synthetic Metals, 1999, 103, 2392-2394.	2.1	17
50	The Substrate is a pH-Controlled Second Gate of Electrolyte-Gated Organic Field-Effect Transistor. ACS Applied Materials & Interfaces, 2016, 8, 31783-31790.	4.0	17
51	Intedigitated p-n junction: a route to improve the efficiency in organic photovoltaic cells. Synthetic Metals, 2001, 121, 1533-1534.	2.1	16
52	Organic-Inorganic Hybrid Spin-Valve: A Novel Approach to Spintronics. Phase Transitions, 2002, 75, 1049-1058.	0.6	16
53	Facile maskless fabrication of organic field effect transistors on biodegradable substrates. Applied Physics Letters, 2013, 103, 073302.	1.5	16
54	Charge Transfer and Percolation in C60/Pentacene Field-Effect Transistors. Advanced Electronic Materials, 2015, 1, 1400036.	2.6	16

#	Article	IF	CITATIONS
55	Tunable Short-Term Plasticity Response in Three-Terminal Organic Neuromorphic Devices. ACS Applied Electronic Materials, 2020, 2, 1849-1854.	2.0	16
56	Water-gated organic transistors on polyethylene naphthalate films. Flexible and Printed Electronics, 2016, 1, 025005.	1.5	14
57	Electrochemical Fabrication of Surface Chemical Gradients in Thiol Self-Assembled Monolayers with Tailored Work-Functions. Langmuir, 2014, 30, 11591-11598.	1.6	13
58	Charge density increase in submonolayer organic field-effect transistors. Physical Review B, 2015, 91, .	1.1	13
59	Water-Based PEDOT:Nafion Dispersion for Organic Bioelectronics. ACS Applied Materials & Amp; Interfaces, 2020, 12, 29807-29817.	4.0	13
60	Efficient second harmonic generation from thin films of V-shaped benzo[b]thiophene based molecules. Optics Express, 2009, 17, 2557.	1.7	12
61	In-situ characterisation of the oxygen induced changes in a UHV grown organic light-emitting diode. Synthetic Metals, 1999, 102, 1095-1096.	2.1	11
62	Optical properties and the photoluminescence quantum yield of organic molecular materials. Journal of Optics, 2000, 2, 577-583.	1.5	11
63	Room temperature deposition of magnetite thin films on organic substrate. Journal of Magnetism and Magnetic Materials, 2007, 316, 410-412.	1.0	11
64	A high-vacuum deposition system for in situ and real-time electrical characterization of organic thin-film transistors. Review of Scientific Instruments, 2011, 82, 025110.	0.6	11
65	Flexible Conductors from Brown Algae for Green Electronics. Advanced Sustainable Systems, 2019, 3, 1900001.	2.7	11
66	Morphological Transitions in Organic Ultrathin Film Growth Imaged by In Situ Step-by-Step Atomic Force Microscopy. Journal of Physical Chemistry C, 2020, 124, 14030-14042.	1.5	11
67	Changes of the Molecular Structure in Organic Thin Film Transistors during Operation. Journal of Physical Chemistry C, 2015, 119, 15912-15918.	1.5	10
68	Atomic Force Microscopy Nanomechanics of Hard Nanometer-Thick Films on Soft Substrates: Insights into Stretchable Conductors. ACS Applied Nano Materials, 2021, 4, 8376-8382.	2.4	10
69	Evaluation of the In Vitro Biocompatibility of PEDOT:Nafion Coatings. Nanomaterials, 2021, 11, 2022.	1.9	10
70	A potential J aggregate molecular system: crystal packing and optical properties of 4,4′-bis(2,3,4,5,6-pentafluorostyryl)stilbene. Synthetic Metals, 2003, 139, 909-912.	2.1	9
71	Excimer-like electroluminescence from thin films of switchable supermolecular anthracene-based rotaxanes. Synthetic Metals, 2001, 122, 27-29.	2.1	7
72	Optical and electroemission properties of thin films of supermolecular anthracene-based rotaxanes. Applied Surface Science, 2001, 175-176, 369-373.	3.1	7

#	Article	IF	CITATIONS
73	A Novel Biasing Scheme of Electrolyteâ€Gated Organic Transistors for Safe In Vivo Amplification of Electrophysiological Signals. Advanced Materials Interfaces, 2022, 9, .	1.9	7
74	Morphology dependent fluorescence in α-sexithienyl thin film at 4.2k. Synthetic Metals, 1999, 101, 592-593.	2.1	6
75	Nanostructured Organic Thin Films: Electronic Energetics and Devices. International Journal of Modern Physics B, 2001, 15, 3722-3726.	1.0	6
76	Molecular orientation in ultrathin films of α-sexithiophene on silicon dioxide revealed by spatially resolved confocal spectroscopy. Synthetic Metals, 2005, 155, 287-290.	2.1	6
77	Understanding adhesion of gold conductive films on sodium-alginate by photoelectron spectroscopy. Thin Solid Films, 2019, 690, 137535.	0.8	6
78	Flexible Neural Interfaces Based on 3D PEDOT:PSS Micropillar Arrays. Advanced Materials Interfaces, 2022, 9, .	1.9	6
79	Direct patterning of tris-(8-hydroxyquinoline)-aluminum (III) thin film at submicron scale by modified micro-transfer molding. Materials Science and Engineering C, 2002, 19, 275-278.	3.8	5
80	Implantable Organic Artificial Synapses Exhibiting Crossover between Depressive and Facilitative Plasticity Response. Advanced Electronic Materials, 0, , 2100755.	2.6	5
81	Femtosecond Differential Transmission Spectroscopy of α-Sexithienyl Thin Film at Low Temperature. Journal of Physical Chemistry B, 2000, 104, 6536-6540.	1.2	4
82	Femtosecond differential transmission spectroscopy of α-sexithienyl thin film. Journal of Luminescence, 2000, 87-89, 736-738.	1.5	3
83	<title>Optical properties of fullerene-based heteromultilayers grown by molecular beam
deposition</title> . , 1996, , .		2
84	Raman and far infrared characterization of the simplest benzylic amide [2] catenane. Synthetic Metals, 1999, 102, 1556-1557.	2.1	2
85	Unravelling molecular disorder at SAM-functionalized charge injection interfaces in organic field-effect transistors. Organic Electronics, 2022, 100, 106360.	1.4	2
86	Organic heteromultilayers: electronic structure of sexithienyl/ thin films grown in ultra-high vacuum. Journal of Optics, 1998, 7, 151-157.	0.5	1
87	Femtosecond Transient Absorption Spectroscopy in α-sexithienyl thin films. Synthetic Metals, 1999, 101, 555-556.	2.1	1
88	Ambipolar light-emitting field-effect transistors based on molecular thin films. , 2006, 6333, 147.		1
89	Intragap-trapped-carriers enhancement of the low-temperature delayed phosphorescence in Alq3. Organic Electronics, 2007, 8, 256-261.	1.4	1
90	Observation of Phonon Resonances in the Optical Nonlinearity in an ?-Sexithienyl Thin Film. Physica Status Solidi (B): Basic Research, 2000, 221, 561-565.	0.7	0

#	Article	IF	CITATIONS
91	Time-resolved stimulated emission in an $\hat{I}\pm$ -sexithienyl thin film. Synthetic Metals, 2001, 116, 49-51.	2.1	0
92	Temperature dependent optical emission efficiency in vacuum sublimed α-sexithienyl thin films. Synthetic Metals, 2001, 121, 1347-1348.	2.1	0
93	Organic Light-Emitting Transistors. , 0, , .		0
94	Light extraction and customized optical distribution from plastic micro-optics integrated OLEDs. , 2006, , .		0
95	Degradation of organic light-emitting diode. , 2006, 6192, 442.		0
96	Influence of the dielectric and of the active layer doping on the FET mobility in PPV-based devices. , 2007, , .		0
97	Changes of the molecular structure in organic thin film transistors during operation. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s522-s522.	0.0	0