List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microchromatography integrated with impedance sensor for bioprocess optimization: Experimental and numerical study of column efficiency for evaluation of scalability. Journal of Chromatography A, 2022, 1661, 462678.	3.7	7
2	Pre-miRNA-149 G-quadruplex as a molecular agent to capture nucleolin. European Journal of Pharmaceutical Sciences, 2022, 169, 106093.	4.0	7
3	Monolithically integrated optical interference and absorption filters on thin film amorphous silicon photosensors for biological detection. Sensors and Actuators B: Chemical, 2022, 356, 131330.	7.8	7
4	Accurate and rapid microfluidic ELISA to monitor Infliximab titers in patients with inflammatory bowel diseases. Analyst, The, 2022, 147, 480-488.	3.5	4
5	Monolithic Integration of Multi-Spectral Optical Interference Filter Array on Thin Film Amorphous Silicon Photodiodes. IEEE Sensors Journal, 2022, 22, 5636-5643.	4.7	5
6	Micropathological Chip Modeling the Neurovascular Unit Response to Inflammatory Bone Condition. Advanced Healthcare Materials, 2022, 11, e2102305.	7.6	14
7	Regenerable bead-based microfluidic device with integrated thin-film photodiodes for real-time monitoring of DNA detection. Sensors and Actuators B: Chemical, 2022, 359, 131607.	7.8	5
8	A Systematic Approach for Developing 3D High-Quality PDMS Microfluidic Chips Based on Micromilling Technology. Micromachines, 2022, 13, 6.	2.9	5
9	Monitoring Intracellular Calcium in Response to GPCR Activation: Comparison Between Microtiter Plates and Microfluidic Assays. Methods in Molecular Biology, 2021, 2268, 289-304.	0.9	0
10	Recent developments in microreactor technology for biocatalysis applications. Reaction Chemistry and Engineering, 2021, 6, 815-827.	3.7	17
11	Rolling Circle Amplification in Bead-Based Microfluidic Device with Integrated Photodiode for Fluorescence Signal Transduction. , 2021, , .		1
12	A Fast Alternative to Soft Lithography for the Fabrication of Organâ€onâ€a hip Elastomericâ€Based Devices and Microactuators. Advanced Science, 2021, 8, 2003273.	11.2	19
13	Aptamer-based approaches to detect nucleolin in prostate cancer. Talanta, 2021, 226, 122037.	5.5	16
14	Label-Free Biosensing Using Thin-Film Amorphous Silicon Photodiodes Integrated With Microfluidics. IEEE Sensors Journal, 2021, 21, 15999-16005.	4.7	5
15	Microfluidic platform for rapid screening of bacterial cell lysis. Journal of Chromatography A, 2020, 1610, 460539.	3.7	7
16	Microfluidic device for multiplexed detection of fungal infection biomarkers in grape cultivars. Analyst, The, 2020, 145, 7973-7984.	3.5	13
17	Microfluidic bioreactors for enzymatic synthesis in packed-bed reactors—Multi-step reactions and upscaling. Journal of Biotechnology, 2020, 323, 24-32.	3.8	14
18	Development Of a Microfluidic Colorectal Cancer Cell Culture System with Integrated Optical Sensors for Rapid Phage Selection. , 2020, , .		0

#	Article	IF	CITATIONS
19	A Versatile and Fully Integrated Hand-Held Device for Microfluidic-Based Biosensing: A Case Study of Plant Health Biomarkers. IEEE Sensors Journal, 2020, 20, 14007-14015.	4.7	7
20	Label-Free Biosensing of DNA in Microfluidics using Amorphous Silicon Capacitive Micro-Cantilevers. IEEE Sensors Journal, 2020, , 1-1.	4.7	9
21	Fabrication and characterization of thin-film silicon resonators on 10 \$oldsymbol{{mu}}\$m-thick polyimide substrates. Journal of Micromechanics and Microengineering, 2020, 30, 045007.	2.6	7
22	Microfluidic device for the point of need detection of a pathogen infection biomarker in grapes. Analyst, The, 2019, 144, 4871-4879.	3.5	15
23	Amorphous Silicon Selfâ€Rolling Micro Electromechanical Systems: From Residual Stress Control to Complex 3D Structures. Advanced Engineering Materials, 2019, 21, 1900663.	3.5	7
24	A Portable Microfluidic System for the Detection of Health Biomarkers in Grapes at the Point of Need. , 2019, , .		0
25	Development of a rapid bead-based microfluidic platform for DNA hybridization using single- and multi-mode interactions for probe immobilization. Sensors and Actuators B: Chemical, 2019, 286, 328-336.	7.8	17
26	Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. Journal of Controlled Release, 2019, 307, 108-138.	9.9	49
27	Optimizing the Performance of Chromatographic Separations Using Microfluidics: Multiplexed and Quantitative Screening of Ligands and Target Molecules. Biotechnology Journal, 2019, 14, e1800593.	3.5	7
28	Label-Free Detection of Biomolecules in Microfluidic Systems Using On-Chip UV and Impedimetric Sensors. IEEE Sensors Journal, 2019, 19, 7803-7812.	4.7	13
29	Thin-Film Silicon MEMS for Dynamic Mass Sensing in Vacuum and Air: Phase Noise, Allan Deviation, Mass Sensitivity and Limits of Detection. Journal of Microelectromechanical Systems, 2019, 28, 390-400.	2.5	23
30	Thin-Film Silicon Resonators on Ultra-Flexible 10 Micrometer-Thick Polyimide Substrates. , 2019, , .		1
31	Silica bead-based microfluidic device with integrated photodiodes for the rapid capture and detection of rolling circle amplification products in the femtomolar range. Biosensors and Bioelectronics, 2019, 128, 68-75.	10.1	33
32	Applications of Recent Developments in Microfluidics for Rapid Analysis of Food Safety and Quality. Food Chemistry, Function and Analysis, 2019, , 256-281.	0.2	0
33	Studies on the purification of antibody fragments. Separation and Purification Technology, 2018, 195, 388-397.	7.9	19
34	Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst, The, 2018, 143, 1015-1035.	3.5	33
35	Multiplexed microfluidic fluorescence immunoassay with photodiode array signal acquisition for sub-minute and point-of-need detection of mycotoxins. Lab on A Chip, 2018, 18, 1569-1580.	6.0	37
36	Capillary-driven microfluidic device with integrated nanoporous microbeads for ultrarapid biosensing assays. Sensors and Actuators B: Chemical, 2018, 265, 452-458.	7.8	22

#	Article	IF	CITATIONS
37	Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection. Biosensors and Bioelectronics, 2018, 99, 40-46.	10.1	59
38	A regenerable microfluidic device with integrated valves and thin-film photodiodes for rapid optimization of chromatography conditions. Sensors and Actuators B: Chemical, 2018, 255, 3636-3646.	7.8	22
39	Development of a Point-of-Care Platform for Plant Health Assessment: A Microfluidic Approach. Proceedings (mdpi), 2018, 2, 819.	0.2	1
40	Optical biosensing in microfluidics using nanoporous microbeads and amorphous silicon thin-film photodiodes: quantitative analysis of molecular recognition and signal transduction. Journal of Micromechanics and Microengineering, 2018, 28, 094004.	2.6	11
41	Top-Down Fabricated Silicon Nanowire Arrays for Field-Effect Detection of Prostate-Specific Antigen. ACS Omega, 2018, 3, 8471-8482.	3.5	31
42	Multiplexed microfluidic platform coupled with photodetector array for point-of-need and sub-minute detection of food contaminants. , 2018, , .		0
43	Quantitative analysis of optical transduction in microfluidic biosensing platforms: Nanoporous microbeads coupled with thin-film photodiodes. , 2018, , .		0
44	A microfluidic platform for physical entrapment of yeast cells with continuous production of invertase. Journal of Chemical Technology and Biotechnology, 2017, 92, 334-341.	3.2	15
45	The application of microbeads to microfluidic systems for enhanced detection and purification of biomolecules. Methods, 2017, 116, 112-124.	3.8	45
46	Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy. Journal of Chromatography A, 2017, 1487, 242-247.	3.7	19
47	A multiplexed microfluidic toolbox for the rapid optimization of affinity-driven partition in aqueous two phase systems. Journal of Chromatography A, 2017, 1515, 252-259.	3.7	17
48	A simple method for point-of-need extraction, concentration and rapid multi-mycotoxin immunodetection in feeds using aqueous two-phase systems. Journal of Chromatography A, 2017, 1511, 15-24.	3.7	17
49	A point-of-use microfluidic device with integrated photodetector array for immunoassay multiplexing: Detection of a panel of mycotoxins in multiple samples. Biosensors and Bioelectronics, 2017, 87, 823-831.	10.1	42
50	Performance of hydrogenated amorphous silicon thin film photosensors at ultra-low light levels: towards attomole sensitivities in labon- chip biosensing applications. IEEE Sensors Journal, 2017, , 1-1.	4.7	17
51	A Novel Microfluidic Cell Co-culture Platform for the Study of the Molecular Mechanisms of Parkinson's Disease and Other Synucleinopathies. Frontiers in Neuroscience, 2016, 10, 511.	2.8	43
52	Electrical characterization of thin-film silicon flexural resonators in linear and nonlinear regimes of motion for integration with electronics. Sensors and Actuators A: Physical, 2016, 247, 482-493.	4.1	4
53	Dynamics of hydrogenated amorphous silicon flexural resonators for enhanced performance. Journal of Applied Physics, 2016, 119, .	2.5	7
54	Integration of Photosensors in a Nano-liter Scale Chromatography Column for the Online Monitoring of Adsorption/Desorption Kinetics of a Fluorophore-labeled Monoclonal Antibody. Procedia Engineering, 2016, 168, 1426-1429.	1.2	2

#	Article	IF	CITATIONS
55	Point-of-use Ultrafast Single-step Detection of Food Contaminants: A Novel Microfluidic Fluorescence-based Immunoassay with Integrated Photodetection. Procedia Engineering, 2016, 168, 329-332.	1.2	6
56	A Multiplexed Integrated a-Si:H Photosensor for Simultaneous Detection of Mycotoxins for Point-of-use Food Safety Applications. Procedia Engineering, 2016, 168, 1422-1425.	1.2	1
57	Microcrystalline Diamond Membrane for Electronic Monitoring of Cells in Microfluidic Perfusion Systems. Procedia Engineering, 2016, 168, 1442-1445.	1.2	1
58	An ultrarapid and regenerable microfluidic immunoassay coupled with integrated photosensors for point-of-use detection of ochratoxin A. Sensors and Actuators B: Chemical, 2016, 235, 554-562.	7.8	30
59	Study on the bio-functionalization of memristive nanowires for optimum memristive biosensors. Journal of Materials Chemistry B, 2016, 4, 2153-2162.	5.8	19
60	Miniaturization of aqueous twoâ€phase extraction for biological applications: From microâ€ŧubes to microchannels. Biotechnology Journal, 2016, 11, 1498-1512.	3.5	23
61	Lab-on-chip systems for integrated bioanalyses. Essays in Biochemistry, 2016, 60, 121-131.	4.7	32
62	High-Throughput Nanoliter-Scale Analysis and Optimization of Multimodal Chromatography for the Capture of Monoclonal Antibodies. Analytical Chemistry, 2016, 88, 7959-7967.	6.5	32
63	DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosensors and Bioelectronics, 2016, 79, 313-319.	10.1	61
64	A microfluidic immunoassay platform for the detection of free prostate specific antigen: a systematic and quantitative approach. Analyst, The, 2015, 140, 4423-4433.	3.5	21
65	Surface plasmon resonance application in prostate cancer biomarker research. Chemical Papers, 2015, 69, .	2.2	18
66	A System Based on Capacitive Interfacing of CMOS With Post-Processed Thin-Film MEMS Resonators Employing Synchronous Readout for Parasitic Nulling. IEEE Journal of Solid-State Circuits, 2015, 50, 1002-1015.	5.4	5
67	Pressure effects on the dissipative behavior of nanocrystalline diamond microelectromechanical resonators. Journal of Micromechanics and Microengineering, 2015, 25, 025019.	2.6	4
68	Optimization and miniaturization of aqueous two phase systems for the purification of recombinant human immunodeficiency virus-like particles from a CHO cell supernatant. Separation and Purification Technology, 2015, 154, 27-35.	7.9	46
69	Sub-micron gap in-plane micromechanical resonators based on low-temperature amorphous silicon thin-films on glass substrates. Journal of Micromechanics and Microengineering, 2015, 25, 075026.	2.6	4
70	Integration of Single Cell Traps, Chemical Gradient Generator and Photosensors in a Microfluidic Platform for the Study of Alpha-Synuclein Toxicity in Yeast. Procedia Engineering, 2014, 87, 92-95.	1.2	0
71	Microfluidic ELISA for sensing of prostate cancer biomarkers using integrated a-Si:H p-i-n photodiodes. , 2014, , .		2
72	Monitoring intracellular calcium in response to GPCR activation using thin-film silicon photodiodes with integrated fluorescence filters. Biosensors and Bioelectronics, 2014, 52, 232-238.	10.1	10

#	Article	IF	CITATIONS
73	Integrated fluorescence detection of labeled biomolecules using a prism-like PDMS microfluidic chip and lateral light excitation. Lab on A Chip, 2014, 14, 1991.	6.0	15
74	Tunable Properties of Hydrogenated Amorphous/Nanocrystalline Silicon Thin-Films for Enhanced MEMS Resonators Performance. Journal of Microelectromechanical Systems, 2014, 23, 600-609.	2.5	9
75	Determination of aqueous two phase system binodal curves using a microfluidic device. Journal of Chromatography A, 2014, 1370, 115-120.	3.7	38
76	An ASIC for readout of post-processed thin-film MEMS resonators by employing capacitive interfacing and active parasitic cancellation. , 2014, , .		2
77	An amorphous silicon photodiode microfluidic chip to detect nanomolar quantities of HIV-1 virion infectivity factor. Analyst, The, 2014, 139, 3709-3713.	3.5	14
78	Modulation of alpha-synuclein toxicity in yeast using a novel microfluidic-based gradient generator. Lab on A Chip, 2014, 14, 3949-3957.	6.0	33
79	Aqueous two-phase systems for enhancing immunoassay sensitivity: Simultaneous concentration of mycotoxins and neutralization of matrix interference. Journal of Chromatography A, 2014, 1361, 67-76.	3.7	20
80	On-chip sample preparation and analyte quantification using a microfluidic aqueous two-phase extraction coupled with an immunoassay. Lab on A Chip, 2014, 14, 4284-4294.	6.0	50
81	Integrated optical detection of autonomous capillary microfluidic immunoassays:a hand-held point-of-care prototype. Biosensors and Bioelectronics, 2014, 57, 284-291.	10.1	45
82	Thin-film amorphous silicon photodiodes with integrated fluorescent filters for monitoring live-cell G-protein coupled receptors (GPCR). , 2014, , .		0
83	Low Temperature Sub-micron Gap Thin-film Silicon Resonators on Glass Substrate. Procedia Engineering, 2014, 87, 1418-1421.	1.2	0
84	Optically transparent diamond–PDMS microfluidic system for electronic monitoring of cells. Physica Status Solidi (B): Basic Research, 2014, 251, 2593-2598.	1.5	7
85	Streaming currents in microfluidics with integrated polarizable electrodes. Microfluidics and Nanofluidics, 2013, 15, 361-376.	2.2	8
86	The effect of the surface functionalization and the electrolyte concentration on the electrical conductance of silica nanochannels. Biomicrofluidics, 2013, 7, 34111.	2.4	24
87	Detection of ochratoxin A in wine and beer by chemiluminescence-based ELISA in microfluidics with integrated photodiodes. Sensors and Actuators B: Chemical, 2013, 176, 232-240.	7.8	74
88	Control of sequential fluid delivery in a fully autonomous capillary microfluidic device. Lab on A Chip, 2013, 13, 641-645.	6.0	63
89	Autonomous capillary microfluidic immunoassay with integrated detection using microfabricated photodiodes: Towards a point-of-care device. , 2013, , .		0
90	Mechanical properties of polymer/carbon nanotube composite micro-electromechanical systems bridges. Journal of Applied Physics, 2013, 113, 134508.	2.5	2

#	Article	IF	CITATIONS
91	Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications. Journal of Applied Physics, 2013, 114, .	2.5	20
92	Sub-micron gap a-Si:H thin film Lamé-mode resonator processed at low temperature on a glass substrate. , 2013, , .		0
93	Transient streaming current measurements in nanochannels for molecular detection. Applied Physics Letters, 2013, 103, 253112.	3.3	4
94	Study of the out-of-plane vibrational modes in thin-film amorphous silicon micromechanical disk resonators. Journal of Applied Physics, 2013, 113, .	2.5	9
95	Metabolic viability of <i><scp>E</scp>scherichia coli</i> trapped by dielectrophoresis in microfluidics. Electrophoresis, 2013, 34, 575-582.	2.4	18
96	Pressure effects on the dynamic properties of hydrogenated amorphous silicon disk resonators. Journal of Micromechanics and Microengineering, 2012, 22, 085026.	2.6	5
97	Mechanical and piezoresistive properties of thin silicon films deposited by plasma-enhanced chemical vapor deposition and hot-wire chemical vapor deposition at low substrate temperatures. Journal of Applied Physics, 2012, 112, 024906.	2.5	16
98	Integrated On-chip Photodetection of Intracellular Calcium in Response to the Activation of G-protein Coupled Receptors. Procedia Engineering, 2012, 47, 993-996.	1.2	0
99	Multi-modal Analysis of Out-of-plane Vibration Modes of Thin-film Circular Resonators for Mass Sensing Applications. Procedia Engineering, 2012, 47, 1121-1124.	1.2	4
100	Lab-on-Chip Prototype Platform for Ochratoxin A Detection in Wine and Beer. Procedia Engineering, 2012, 47, 550-553.	1.2	5
101	High-throughput study of alpha-synuclein expression in yeast using microfluidics for control of local cellular microenvironment. Biomicrofluidics, 2012, 6, 014109.	2.4	11
102	Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors. Biosensors and Bioelectronics, 2012, 36, 242-249.	10.1	8
103	Design of a microfluidic platform for monoclonal antibody extraction using an aqueous two-phase system. Journal of Chromatography A, 2012, 1249, 1-7.	3.7	54
104	Towards the miniaturization of GPCR-based live-cell screening assays. Trends in Biotechnology, 2012, 30, 566-574.	9.3	31
105	Derivation of the near-surface dielectric function of amorphous silicon from photoelectron loss spectra. Journal of Non-Crystalline Solids, 2012, 358, 2019-2022.	3.1	6
106	Mechanical characterization of all-polymer/carbon nanotube composite micro-resonators. , 2012, , .		0
107	Streaming current measurements in micro and nanofluidic channels for label-free multiplexed genomics diagnostics. , 2012, , .		1
108	Towards a high-throughput drug discovery platform for the screening of GPCR targets in cells. , 2011,		0

#	Article	IF	CITATIONS
109	Lab-on-a-Chip Ochratoxin A Detection Using Competitive ELISA in Microfluidics with Integrated Photodiode Signal Acquisition. Procedia Engineering, 2011, 25, 1205-1208.	1.2	6
110	Hydrogenated Amorphous Silicon Thin-Film Disk Resonators. Procedia Engineering, 2011, 25, 1525-1528.	1.2	0
111	Integration of Carbon Nanotubes into Electrostatically Actuated all-Polymer PEDOT: PSS/PMMA MEMS. Procedia Engineering, 2011, 25, 1665-1668.	1.2	3
112	Electrical detection of DNA immobilization and hybridization by streaming current measurements in microchannels. Applied Physics Letters, 2011, 99, 183702.	3.3	10
113	Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes. Lab on A Chip, 2011, 11, 4063.	6.0	64
114	Submicron thin-film amorphous silicon photoconductive light sensors. Sensors and Actuators A: Physical, 2011, 170, 32-35.	4.1	4
115	Integration of thin film amorphous silicon photodetector with lab-on-chip for monitoring protein fluorescence in solution and in live microbial cells. Sensors and Actuators B: Chemical, 2011, 156, 662-667.	7.8	14
116	Microelectromechanical resonators based on an all polymer/carbon nanotube composite structural material. Applied Physics Letters, 2011, 99, 044104.	3.3	12
117	Heterogeneous immunoassays in microfluidic format using fluorescence detection with integrated amorphous silicon photodiodes. Biomicrofluidics, 2011, 5, 14102.	2.4	23
118	Thin film amorphous silicon bulk-mode disk resonators fabricated on glass substrates. Materials Research Society Symposia Proceedings, 2011, 1299, 1.	0.1	2
119	Amorphous Silicon Photosensors for Detection of Intrinsic Cell Fluorophores. Materials Research Society Symposia Proceedings, 2011, 1321, 435.	0.1	2
120	Reliability and stability of thin-film amorphous silicon MEMS on glass substrates. Materials Research Society Symposia Proceedings, 2011, 1299, 1.	0.1	0
121	Characterisation of hydrogenated silicon–carbon alloy filters with different carbon composition for on-chip fluorescence detection of biomolecules. Sensors and Actuators A: Physical, 2010, 163, 96-100.	4.1	20
122	Patterned functionalization layer for sub-μL DNA solid-phase immobilization and hybridization. Sensors and Actuators B: Chemical, 2010, 149, 432-438.	7.8	2
123	Selective patterning of covalent molecular grafting on doped amorphous silicon templates. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	0
124	Spectral selectivity constraints in fluo―rescence detection of biomolecules using amorphous silicon based detectors. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1156-1159.	0.8	2
125	Reply to "Comment on â€ [~] Current routes in hydrogenated microcrystalline silicon' ― Physical Review 2010, 81,	/ B, 3.2	2
126	Mechanical properties of thin silicon films deposited at low temperatures by PECVD. Journal of Micromechanics and Microengineering, 2010, 20, 035022.	2.6	21

#	Article	IF	CITATIONS
127	Detection of fluorescently labeled biomolecules immobilized on a detachable substrate using an integrated amorphous silicon photodetector. Applied Physics Letters, 2009, 94, 164106.	3.3	10
128	Thermal grafting of fluorinated molecular monolayers on doped amorphous silicon surfaces. Journal of Applied Physics, 2009, 105, 064914.	2.5	3
129	Chemiluminescent Detection of Horseradish Peroxidase Using an Integrated Amorphous Silicon Thin-Film Photosensor. IEEE Sensors Journal, 2009, 9, 1282-1290.	4.7	23
130	Comparison of amorphous silicon photodiodes and photoconductors for detection of quantum dot biomolecular tags. Journal of Applied Physics, 2009, 106, .	2.5	7
131	The effect of the shape of single, sub-ms voltage pulses on the rates of surface immobilization and hybridization of DNA. Nanotechnology, 2009, 20, 015503.	2.6	6
132	Comparison of the mechanical and resonance properties of thin film silicon MEMS fabricated at 110 and 250 ŰC. Journal of Micromechanics and Microengineering, 2009, 19, 025018.	2.6	12
133	Enzymatic Biosensors with Integrated Thin Film a-Si:H Photodiodes. Materials Research Society Symposia Proceedings, 2009, 1153, 1.	0.1	0
134	Miniaturization of Immunoassays Using Optical Detection with Integrated Amorphous Silicon Photodiodes. Materials Research Society Symposia Proceedings, 2009, 1191, 66.	0.1	0
135	Thin Film Amorphous Silicon Nanoscale Photodetectors. Procedia Chemistry, 2009, 1, 433-436.	0.7	1
136	Mass Sensing using an Amorphous Silicon MEMS resonator. Procedia Chemistry, 2009, 1, 1063-1066.	0.7	4
137	Ionic Conductivity Measurements in a SiO2 Nanochannel with PDMS Interconnects. Procedia Chemistry, 2009, 1, 1095-1098.	0.7	4
138	Microscopic and macroscopic manifestations of percolation transitions in a semiconductor composite. Physical Review B, 2009, 80, .	3.2	10
139	On-chip magnetoresistive detection of resonance in microcantilevers. Applied Physics Letters, 2009, 95,	3.3	16
140	Performance of thin film silicon MEMS on flexible plastic substrates. Sensors and Actuators A: Physical, 2008, 144, 201-206.	4.1	27
141	Colorimetric detection of molecular recognition reactions with an enzyme biolabel using a thin-film amorphous silicon photodiode on a glass substrate. Sensors and Actuators B: Chemical, 2008, 135, 102-107.	7.8	13
142	Observation of field-effect in a cross-linked polyfluorene semiconductor. Chemical Physics Letters, 2008, 455, 189-191.	2.6	15
143	Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors. Biosensors and Bioelectronics, 2008, 24, 545-551.	10.1	83
144	Hybrid Magnetic Tunnel Junction-MEMS High Frequency Field Modulator for 1/f Noise Suppression. IEEE Transactions on Magnetics, 2008, 44, 2554-2557.	2.1	25

#	Article	IF	CITATIONS
145	Detection of molecular tags with an integrated amorphous silicon photodetector for biological applications. Journal of Non-Crystalline Solids, 2008, 354, 2594-2597.	3.1	14
146	Amorphous Silicon Thin-Film Transistors Gated Through an Electrolyte Solution. IEEE Electron Device Letters, 2008, 29, 1030-1033.	3.9	3
147	Fluorescence detection of DNA using an amorphous silicon p-i-n photodiode. Journal of Applied Physics, 2008, 104, 054913.	2.5	17
148	Mechanical Properties and Reliability of Amorphous vs. Polycrystalline Silicon Thin Films. Materials Research Society Symposia Proceedings, 2008, 1066, 1.	0.1	5
149	Hybrid magnetoresistiveâ^•microelectromechanical devices for static field modulation and sensor 1â^•f noise cancellation. Journal of Applied Physics, 2008, 103, .	2.5	43
150	On-Chip Control of DNA Immobilization and Hybridization with Nanosecond Electric Field Pulses. , 2007, , .		1
151	Performance of Thin Film Silicon MEMS on Flexible Plastic Substrates. Materials Research Society Symposia Proceedings, 2007, 989, 2.	0.1	5
152	Electrostatically actuated bilayer polyimide-based microresonators. Journal of Micromechanics and Microengineering, 2007, 17, 797-803.	2.6	14
153	Surface micromachining of a thin film microresonator using dry decomposition of a polymer sacrificial layer. Journal of Vacuum Science & Technology B, 2007, 25, 455.	1.3	5
154	Flexural and torsional vibration modes in low temperature thin-film silicon paddle microresonators. Applied Physics Letters, 2007, 90, 233502.	3.3	1
155	Detection of Chemiluminescence Using an Amorphous Silicon Photodiode. IEEE Sensors Journal, 2007, 7, 415-416.	4.7	31
156	Resonance of electrostatically actuated thin-film amorphous silicon microelectromechanical systems microresonators in aqueous solutions: Effect of solution conductivity and viscosity. Journal of Applied Physics, 2007, 101, 094308.	2.5	8
157	Conductive Blended Polymer MEMS Microresonators. Journal of Microelectromechanical Systems, 2007, 16, 329-335.	2.5	8
158	Nanotechnology and the Detection of Biomolecular Recognition Using Magnetoresistive Transducers. , 2007, , 3-22.		1
159	Electrostatically actuated conducting polymer microbridges. Journal of Applied Physics, 2007, 101, 064507.	2.5	11
160	pH sensitive photoconductor based on poly(para-phenylene-vinylene). Sensors and Actuators B: Chemical, 2007, 123, 153-157.	7.8	16
161	Noise Characteristics and Particle Detection Limits in Diode\$+\$MTJ Matrix Elements for Biochip Applications. IEEE Transactions on Magnetics, 2007, 43, 2403-2405.	2.1	15

162 Scalable Magnetoresistive Biochips For Biomolecular recognition. , 2006, , .

0

#	Article	IF	CITATIONS
163	Micromechanical properties of amorphous, nanocrystalline and transition phase hot-wire thin-silicon MEMS. Journal of Non-Crystalline Solids, 2006, 352, 1234-1237.	3.1	0
164	Label-free electronic detection of biomolecules using a-Si:H field-effect devices. Journal of Non-Crystalline Solids, 2006, 352, 2007-2010.	3.1	11
165	Thin-film silicon MEMS DNA sensors. Journal of Non-Crystalline Solids, 2006, 352, 1999-2003.	3.1	11
166	a-Si:H Electrolyte-Gate Thin Film Devices for Biological Applications. Materials Research Society Symposia Proceedings, 2006, 926, 1.	0.1	0
167	Diode/magnetic tunnel junction cell for fully scalable matrix-based biochip. Journal of Applied Physics, 2006, 99, 08B307.	2.5	30
168	Thin film silicon MEMS microresonators fabricated by hot-wire chemical vapor deposition. Journal of Micromechanics and Microengineering, 2006, 16, 2730-2735.	2.6	6
169	Electrostatically actuated resonance of amorphous silicon microresonators in water. Applied Physics Letters, 2006, 89, 143109.	3.3	17
170	Single base mismatch detection by microsecond voltage pulses. Biosensors and Bioelectronics, 2005, 21, 888-893.	10.1	19
171	Thin Film Silicon Microbridges for DNA Detection. Materials Research Society Symposia Proceedings, 2005, 872, 1.	0.1	0
172	Electrostatically actuated thin-film amorphous silicon microbridge resonators. Journal of Applied Physics, 2005, 97, 094501.	2.5	30
173	Current routes in hydrogenated microcrystalline silicon. Physical Review B, 2005, 71, .	3.2	66
174	Fabrication and Electromechanical Properties of Conductive Polymer Microbridge Actuators. Materials Research Society Symposia Proceedings, 2005, 872, 1.	0.1	1
175	Electrostatically actuated polymer microresonators. Applied Physics Letters, 2005, 87, 104104.	3.3	27
176	Electrostatic microresonators from doped hydrogenated amorphous and nanocrystalline silicon thin films. Journal of Microelectromechanical Systems, 2005, 14, 1082-1088.	2.5	18
177	Electric-field assisted immobilization and hybridization of DNA oligomers on thin-film microchips. Nanotechnology, 2005, 16, 2061-2071.	2.6	36
178	Amorphous silicon electrostatic microresonators with high quality factors. Applied Physics Letters, 2004, 84, 622-624.	3.3	54
179	Optoelectronic detection of DNA molecules using an amorphous silicon photodetector. Materials Research Society Symposia Proceedings, 2004, 820, 61.	0.1	0
180	An on-chip thin film photodetector for the quantification of DNA probes and targets in microarrays. Nucleic Acids Research, 2004, 32, e70-e70.	14.5	81

JOAO P CONDE

#	Article	IF	CITATIONS
181	Covalent immobilization of DNA and hybridization on microchips by microsecond electric field pulses. Materials Research Society Symposia Proceedings, 2004, 820, 55.	0.1	1
182	Immobilization and hybridization by single sub-millisecond electric field pulses, for pixel-addressed DNA microarrays. Biosensors and Bioelectronics, 2004, 19, 1591-1597.	10.1	41
183	Hot-wire thin-film transistors on PET at 100 °C. Thin Solid Films, 2003, 430, 240-244.	1.8	14
184	Non-invasive electrical characterization of semiconductor interfaces. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 102, 156-160.	3.5	0
185	Low-temperature thin-film silicon MEMS. Thin Solid Films, 2003, 427, 181-186.	1.8	14
186	Electric-field-pulse-assisted covalent immobilization of DNA in the nanosecond time scale. Applied Physics Letters, 2003, 83, 1465-1467.	3.3	22
187	Integrated magnetic sensing of electrostatically actuated thin-film microbridges. Journal of Microelectromechanical Systems, 2003, 12, 550-556.	2.5	16
188	Electronic and structural properties of doped amorphous and nanocrystalline silicon deposited at low substrate temperatures by radio-frequency plasma-enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1048-1054.	2.1	30
189	Electrostatic actuation of thin-film microelectromechanical structures. Journal of Applied Physics, 2003, 93, 10018-10029.	2.5	47
190	Optoelectronic Detection of DNA Molecules Using an Amorphous Silicon Photodetector. Materials Research Society Symposia Proceedings, 2003, 762, 2121.	0.1	1
191	Electric field pulse assisted covalent immobilization and hybridization of DNA in the nanosecond time scale. Materials Research Society Symposia Proceedings, 2003, 773, 1051.	0.1	1
192	Microelectromechanical system microbridge deflection monitoring using integrated spin valve sensors and micromagnets. Journal of Applied Physics, 2002, 91, 7774.	2.5	13
193	Thin film micro arrays with immobilized DNA for hybridization analysis. Materials Research Society Symposia Proceedings, 2002, 723, 231.	0.1	16
194	Integrated Magnetic Sensing of Electrostatically Actuated Thin-Film Microbridges. Materials Research Society Symposia Proceedings, 2002, 729, 371.	0.1	3
195	Direct measurement of Urbach tail and gap state absorption in CuGaSe2 thin films by photothermal deflection spectroscopy and the constant photocurrent method. Journal of Applied Physics, 2002, 92, 3016-3020.	2.5	55
196	MEMS microbridge vibration monitoring using spin-valve sensors. IEEE Transactions on Magnetics, 2002, 38, 3371-3373.	2.1	4
197	Piezoresistive sensors on plastic substrates using doped microcrystalline silicon. IEEE Sensors Journal, 2002, 2, 336-341.	4.7	25
198	Electronic transport in microcrystalline silicon controlled by trapping and intra-grain mobility. Journal of Non-Crystalline Solids, 2002, 299-302, 365-369.	3.1	20

#	Article	IF	CITATIONS
199	Electronic transport in low-temperature silicon nitride. Journal of Non-Crystalline Solids, 2002, 299-302, 434-438.	3.1	8
200	Thermal actuation of thin film microelectromechanical structures. Journal of Non-Crystalline Solids, 2002, 299-302, 1224-1228.	3.1	22
201	Thin Film Microelectromechanical Systems. Materials Research Society Symposia Proceedings, 2002, 715, 1231.	0.1	0
202	Photoluminescence and sub band gap absorption of CuGaSe2 thin films. Thin Solid Films, 2002, 403-404, 495-499.	1.8	23
203	Properties of high growth rate amorphous silicon deposited by MC-RF-PECVD. Vacuum, 2002, 64, 245-248.	3.5	12
204	Lifetime Regime in the Electrically-Detected Transient Grating Method Applied to Amorphous and Microcrystalline Silicon Films. Materials Research Society Symposia Proceedings, 2002, 715, 2021.	0.1	1
205	Thin-Film Transistors on PET at 100°C. Materials Research Society Symposia Proceedings, 2002, 715, 311.	0.1	6
206	Electromechanical properties of amorphous and microcrystalline silicon micromachined structures. Materials Research Society Symposia Proceedings, 2001, 664, 2641.	0.1	6
207	Amorphous and microcrystalline silicon deposited by hot-wire chemical vapor deposition at low substrate temperatures: application to devices and thin-film microelectromechanical systems. Thin Solid Films, 2001, 395, 105-111.	1.8	22
208	Thin-Film Microelectromechanical Devices on Large-Area Substrates. Solid State Phenomena, 2001, 80-81, 429-440.	0.3	3
209	Doping of amorphous and microcrystalline silicon films deposited at low substrate temperatures by hot-wire chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 2328-2334.	2.1	33
210	Doping of amorphous and microcrystalline silicon films by hot-wire CVD and RFPECVD at low substrate temperatures on plastic substrates. Materials Research Society Symposia Proceedings, 2000, 609, 2261.	0.1	10
211	Photoluminescence intensity and anisotropy decays in amorphous carbon. Chemical Physics Letters, 2000, 319, 113-118.	2.6	16
212	Spin dependent tunnel junctions for memory and read-head applications. IEEE Transactions on Magnetics, 2000, 36, 2796-2801.	2.1	48
213	Amorphous silicon air-gap resonators on large-area substrates. Applied Physics Letters, 2000, 77, 907-909.	3.3	39
214	Low substrate temperature deposition of amorphous and microcrystalline silicon films on plastic substrates by hot-wire chemical vapor deposition. Journal of Non-Crystalline Solids, 2000, 266-269, 110-114.	3.1	18
215	Time-resolved study of photoluminescence polarization in a-C:H films. Journal of Non-Crystalline Solids, 2000, 266-269, 773-777.	3.1	1
216	Thin film micromachined structures for large-area applications. Journal of Non-Crystalline Solids, 2000, 266-269, 1340-1344.	3.1	5

#	Article	IF	CITATIONS
217	Vertical integration of a spin dependent tunnel junction with an amorphous Si diode for MRAM application. IEEE Transactions on Magnetics, 1999, 35, 2832-2834.	2.1	19
218	Vertical integration of spin dependent tunnel junction and amorphous Si diode for MRAM application. , 1999, , .		1
219	Optoelectronic and structural properties of amorphous silicon–carbon alloys deposited by low-power electron-cyclotron resonance plasma-enhanced chemical-vapor deposition. Journal of Applied Physics, 1999, 85, 3327-3338.	2.5	78
220	Ion implantation of microcrystalline silicon for low process temperature top gate thin film transistors. Thin Solid Films, 1999, 337, 203-207.	1.8	1
221	Micromachining of an air-bridge structure using thin-films on glass substrates. Sensors and Actuators A: Physical, 1999, 74, 5-8.	4.1	3
222	Vertical integration of a spin dependent tunnel junction with an amorphous Si diode. Applied Physics Letters, 1999, 74, 3893-3895.	3.3	18
223	Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition. Journal of Applied Physics, 1999, 86, 3812-3821.	2.5	131
224	Atomic Force Microscopy Study of Initial Nucleation in the Deposition OF μc-Si:H. Materials Research Society Symposia Proceedings, 1999, 557, 519.	0.1	0
225	Mobility-lifetime product in microdoped amorphous silicon deposited by hot-wire chemical vapor deposition. Journal of Non-Crystalline Solids, 1998, 227-230, 225-228.	3.1	Ο
226	Wide band gap a-SiC:H films for optoelectronic applications. Journal of Non-Crystalline Solids, 1998, 227-230, 465-469.	3.1	13
227	Photoluminescence of polymer-like amorphous carbon films grown in different plasma reactors. Journal of Non-Crystalline Solids, 1998, 227-230, 574-578.	3.1	8
228	Air-gap amorphous silicon thin film transistors. Applied Physics Letters, 1998, 73, 502-504.	3.3	25
229	Possible Origin of Large Response Times and Ambipolar Diffusion Lengths in Hot-Wire-Cvd Silicon Films. Materials Research Society Symposia Proceedings, 1998, 507, 799.	0.1	1
230	Application of Thin-Film Micromachining on Glass. Materials Research Society Symposia Proceedings, 1998, 507, 85.	0.1	2
231	The Effect of Hydrogen Dilution on Hot-Wire Thin-Film Transistors. Materials Research Society Symposia Proceedings, 1998, 507, 909.	0.1	7
232	Role of RF Power and Gas Mixture in Some Optical and Photoluminescence Properties of Dual-Plasma a-C:H Films. Materials Research Society Symposia Proceedings, 1998, 508, 203.	0.1	1
233	Amorphous and Microcrystalline Silicon Deposited by Low-Power Electron-Cyclotron Resonance Plasma-Enhanced Chemical-Vapor Deposition. Japanese Journal of Applied Physics, 1997, 36, 38-49.	1.5	14
234	Amorphous and microcrystalline silicon films obtained by hot-wire chemical vapour deposition using high filament temperatures between 1900 and 2500°C. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 299-308.	0.6	19

#	Article	IF	CITATIONS
235	Improved mobility of amorphous silicon thin-film transistors deposited by hot-wire chemical vapor deposition on glass substrates. Applied Physics Letters, 1997, 70, 2714-2716.	3.3	25
236	Amorphous and microcrystalline silicon films deposited by hotâ€wire chemical vapor deposition at filament temperatures between 1500 and 1900 °C. Journal of Applied Physics, 1996, 79, 8748-8760.	2.5	58
237	Study of Doped-Intrinsic Interfaces in Amorphous Semiconductors Using Doping Multilayers. Materials Science Forum, 1996, 207-209, 589-592.	0.3	0
238	Photoconductive analysis of defect density of hydrogenated amorphous silicon during room-temperature plasma posthydrogenation, light soaking, and thermal annealing. Physical Review B, 1996, 53, 1886-1890.	3.2	2
239	In-plane photoconductivity in amorphous silicon doping multilayers. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 74, 331-347.	0.6	1
240	Transport and photoluminescence of hydrogenated amorphous silicon–carbon alloys. Journal of Applied Physics, 1995, 78, 3164-3173.	2.5	56
241	Low filament temperature deposition ofa‣i:H by hotâ€wire chemical vapor deposition. Journal of Applied Physics, 1995, 78, 3776-3783.	2.5	22
242	Carrier lifetime in amorphous semiconductors. Journal of Applied Physics, 1994, 75, 7349-7355.	2.5	10
243	Properties of amorphous silicon/amorphous siliconâ€germanium multilayers. Journal of Applied Physics, 1994, 75, 1638-1655.	2.5	18
244	High-Growth Rate a-Si:H Deposited by Hot-Wire CVD. Materials Research Society Symposia Proceedings, 1994, 336, 67.	0.1	2
245	Dual-beam photocurrent spectra in undoped a-Si:H: anomalous band, optical transition energy, and correlation energy. Journal of Non-Crystalline Solids, 1993, 164-166, 383-386.	3.1	4
246	Response time measurements in microcrystalline silicon. Journal of Non-Crystalline Solids, 1993, 164-166, 477-480.	3.1	6
247	Annealing kinetics ofaâ€Si:H deposited by concentricâ€electrode rf glow discharge at room temperature. Journal of Applied Physics, 1993, 73, 1826-1831.	2.5	6
248	Low Filament Temperature Deposition of a-Si:H by Catalytic Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 1993, 297, 121.	0.1	1
249	Dual-Beam Photocurrent Spectra in Undoped a-Si:H. Materials Research Society Symposia Proceedings, 1993, 297, 473.	0.1	1
250	The effect of the flow of silane on the properties ofaâ€6i:H deposited by concentricâ€electrode radio frequency glowâ€discharge. Journal of Applied Physics, 1992, 71, 3990-3996.	2.5	9
251	Amorphous silicon-germanium thin-film photodetector array. IEEE Electron Device Letters, 1992, 13, 5-7.	3.9	22
252	Deposition of amorphous silicon using a tubular reactor with concentricâ€electrode confinement. Journal of Applied Physics, 1992, 71, 3981-3989.	2.5	15

#	Article	IF	CITATIONS
253	Optoelectronic properties of hydrogenated amorphous silicon films deposited under negative substrate bias. Journal of Applied Physics, 1991, 69, 2942-2950.	2.5	46
254	Photocurrent collection in a Schottky barrier on an amorphous siliconâ€germanium alloy structure with 1.23 eV optical gap. Applied Physics Letters, 1989, 55, 262-264.	3.3	24
255	a-Si:H, to or from a-Si, Ge:H, F graded-bandgap structures. IEEE Transactions on Electron Devices, 1989, 36, 2834-2838.	3.0	4
256	Electron transport in superlattices. Superlattices and Microstructures, 1989, 6, 1-5.	3.1	1
257	The optoelectronic properties of a-Si, Ge:H(F) alloys. Journal of Non-Crystalline Solids, 1989, 114, 453-458.	3.1	20
258	Breaking the isotropy of amorphous silicon-germanium alloys: Graded-bandgap and sawtooth superlattice structures. Journal of Non-Crystalline Solids, 1989, 114, 693.	3.1	4
259	Simple procedure for generating sequences of daily radiation values using a library of Markov transition matrices. Solar Energy, 1988, 40, 269-279.	6.1	218
260	Optical and transport properties of a-Si:H,F/a-Si,Ge:H,F superlattices. Solar Cells, 1988, 24, 223-235.	0.6	4
261	Amorphous silicon-germanium alloy multilayers for solar cells. , 1988, , .		0
262	Determination of theD 0/â^'level in amorphous Si,Ge:H(F) by timeâ€ofâ€flight charge collection. Applied Physics Letters, 1988, 53, 1542-1544.	3.3	10
263	Femtosecond spectroscopy in amorphous silicon and silicon-germanium alloys. Journal of Non-Crystalline Solids, 1987, 97-98, 145-148.	3.1	6
264	Steady state and transient transport in a-Si, Ge : H, F alloys. Journal of Non-Crystalline Solids, 1987, 97-98, 1023-1026.	3.1	24
265	Carrier transport mechanisms in a-Si:H,F/a-Si,Ge:H,F superlattices. Journal of Non-Crystalline Solids, 1987, 97-98, 939-942.	3.1	10
266	Porphyrin—quinone excited state interactions in reversed micelles. Journal of Photochemistry and Photobiology, 1985, 28, 153-164.	0.6	21
267	MEMS microbridge deflection monitoring using integrated spin valve sensors and micromagnets. , 0, , .		1
268	Electric field pulse assisted covalent immobilization and hybridization of DNA in the nanosecond time scale for genetic information analysis. , 0, , .		0
269	High-Q thin-film silicon resonators processed at temperatures below 110°C on glass and plastic substrates. , 0, , .		3
270	Thin-film paddle microresonators with high quality factors fabricated at temperatures below 110° C. , 0, , .		0