Marco Marconi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113422/publications.pdf

Version: 2024-02-01

86	1,360	22	34
papers	citations	h-index	g-index
89	89	89	1194
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Design for De-manufacturing Methodology to Improve the Product End of Life Environmental Sustainability. Lecture Notes in Mechanical Engineering, 2022, , 373-380.	0.4	1
2	Investigating a Circular Economy Application: Reuse of End of Life Tire Fibers in a Plastic Compound. Lecture Notes in Mechanical Engineering, 2022, , 357-364.	0.4	0
3	Comparative life cycle assessment of two different battery technologies: lithium iron phosphate and sodium-sulfur. Procedia CIRP, 2022, 105, 482-488.	1.9	3
4	Comparing the environmental and economic performances of different substrate pre-treatment processes for diamond coating deposition. Procedia CIRP, 2022, 105, 476-481.	1.9	1
5	Environmental assessment and eco-design of a surgical face mask. Procedia CIRP, 2022, 105, 61-66.	1.9	4
6	Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework. Applied Energy, 2022, 312, 118671.	10.1	17
7	A sustainable manufacturing tool for the analysis and management of resource consumption within production processes. International Journal on Interactive Design and Manufacturing, 2021, 15, 65-68.	2.2	3
8	Challenging the engineering design process for the development of facial masks in the constraint of the COVID-19 pandemic. Procedia CIRP, 2021, 100, 660-665.	1.9	3
9	Product Eco-Design in the Era of Circular Economy: Experiences in the Design of Espresso Coffee Machines. Lecture Notes in Mechanical Engineering, 2021, , 194-199.	0.4	2
10	Environmental implication of personal protection equipment in the pandemic era: LCA comparison of face masks typologies. Procedia CIRP, 2021, 98, 306-311.	1.9	30
11	Polymer Materials for Respiratory Protection: Processing, End Use, and Testing Methods. ACS Applied Polymer Materials, 2021, 3, 531-548.	4.4	44
12	Life cycle assessment of a leather shoe supply chain. International Journal of Sustainable Engineering, 2021, 14, 686-703.	3.5	8
13	Engineering Design Process of Face Masks Based on Circularity and Life Cycle Assessment in the Constraint of the COVID-19 Pandemic. Sustainability, 2021, 13, 4948.	3.2	27
14	ECO-DESIGN ACTIONS TO IMPROVE LIFE CYCLE ENVIRONMENTAL PERFORMANCE OF FACE MASKS IN THE PANDEMIC ERA. Proceedings of the Design Society, 2021, 1, 1333-1342.	0.8	2
15	An interactive resource value mapping tool to support the reduction of inefficiencies in smart manufacturing processes. International Journal on Interactive Design and Manufacturing, 2021, 15, 211-224.	2.2	3
16	Environmental and buckling performance analysis of 3D printed composite isogrid structures. Procedia CIRP, 2021, 98, 458-463.	1.9	10
17	Eco-design teaching initiative within a manufacturing company based on LCA analysis of company product portfolio. Journal of Cleaner Production, 2020, 242, 118424.	9.3	21
18	Comparative life cycle assessment of standard, cellulose-reinforced and end of life tires fiber-reinforced hot mix asphalt mixtures. Journal of Cleaner Production, 2020, 248, 119295.	9.3	56

#	Article	IF	CITATIONS
19	Reuse of leather scraps for insulation panels: Technical and environmental feasibility evaluation. Procedia CIRP, 2020, 90, 55-60.	1.9	7
20	Big data analysis for the estimation of disassembly time and de-manufacturing activity. Procedia CIRP, 2020, 90, 617-622.	1.9	6
21	A critical review of symbiosis approaches in the context of Industry 4.0â ⁺ †. Journal of Computational Design and Engineering, 2020, 7, 269-278.	3.1	18
22	An energy assessment method for SMEs: case study of an Italian mechanical workshop. Procedia Manufacturing, 2020, 43, 56-63.	1.9	4
23	Life cycle impact assessment of different manufacturing technologies for automotive CFRP components. Journal of Cleaner Production, 2020, 271, 122677.	9.3	31
24	A Knowledge Repository to Support Ecodesign Implementation in Manufacturing Companies. Lecture Notes in Mechanical Engineering, 2020, , 651-661.	0.4	0
25	Improving the Shoes Customization Process Through a Digitally-Enabled Framework. Lecture Notes in Mechanical Engineering, 2020, , 317-328.	0.4	2
26	An Augmented Reality System for Operator Training in the Footwear Sector. Computer-Aided Design and Applications, 2020, 18, 692-703.	0.6	6
27	Applying data mining technique to disassembly sequence planning: a method to assess effective disassembly time of industrial products. International Journal of Production Research, 2019, 57, 599-623.	7. 5	64
28	An Innovative Framework for Managing the Customization of Tailor-made Shoes. Proceedings of the Design Society International Conference on Engineering Design, 2019, 1, 3821-3830.	0.6	4
29	Energy efficiency of manufacturing systems: A review of energy assessment methods and tools. Journal of Cleaner Production, 2019, 240, 118276.	9.3	76
30	Comparative life cycle assessment and cost analysis of autoclave and pressure bag molding for producing CFRP components. International Journal of Advanced Manufacturing Technology, 2019, 105, 1967-1982.	3.0	27
31	Teaching eco-design by using LCA analysis of company's product portfolio: the case study of an Italian manufacturing firm. Procedia CIRP, 2019, 80, 452-457.	1.9	14
32	Analyzing the environmental sustainability of glass bottles reuse in an Italian wine consortium. Procedia CIRP, 2019, 80, 399-404.	1.9	23
33	Comparative life cycle assessment of low-pressure RTM, compression RTM and high-pressure RTM manufacturing processes to produce CFRP car hoods. Procedia CIRP, 2019, 80, 352-357.	1.9	31
34	A method for lean energy assessment of manufacturing systems. Procedia CIRP, 2019, 81, 1447-1452.	1.9	2
35	A design for disassembly tool oriented to mechatronic product de-manufacturing and recycling. Advanced Engineering Informatics, 2019, 39, 62-79.	8.0	71
36	Resources value mapping: A method to assess the resource efficiency of manufacturing systems. Applied Energy, 2019, 249, 326-342.	10.1	47

#	Article	IF	CITATIONS
37	A standard data model for life cycle analysis of industrial products: A support for eco-design initiatives. Computers in Industry, 2019, 109, 31-44.	9.9	21
38	A multi-criteria index to support ecodesign implementation in manufacturing products: benefits and limits in real case studies. International Journal of Sustainable Engineering, 2019, 12, 376-389.	3.5	12
39	Web-based platform for eco-sustainable supply chain management. Sustainable Production and Consumption, 2019, 17, 215-228.	11.0	31
40	Feasibility Study and Design of an Automatic System for Electronic Components Disassembly. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	2.2	15
41	An Analytical Cost Estimation Approach for Generic Sheet Metal 3D Models. Computer-Aided Design and Applications, 2019, 16, 936-950.	0.6	1
42	Environmental and Economic Evaluation of the Sheet Metal Stamping Process Using Alternative Lubricants. , 2019, , .		2
43	Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres. Waste Management, 2018, 75, 187-204.	7.4	76
44	Implementation of a software platform to support an eco-design methodology within a manufacturing firm. International Journal of Sustainable Engineering, 2018, 11, 79-96.	3.5	28
45	Life Cycle Model and Metrics in Shipbuilding: How to Use them in the Preliminary Design Phases. Procedia CIRP, 2018, 69, 523-528.	1.9	22
46	A method to estimate the total VOC emission of furniture products. Procedia Manufacturing, 2018, 21, 486-493.	1.9	9
47	Reuse scenarios of tires textile fibers: an environmental evaluation. Procedia Manufacturing, 2018, 21, 329-336.	1.9	31
48	An approach to favor industrial symbiosis: the case of waste electrical and electronic equipment. Procedia Manufacturing, 2018, 21, 502-509.	1.9	29
49	Time-based disassembly method: how to assess the best disassembly sequence and time of target components in complex products. International Journal of Advanced Manufacturing Technology, 2018, 95, 409-430.	3.0	60
50	Reuse of Tires Textile Fibers in Plastic Compounds: Is this Scenario Environmentally Sustainable?. Procedia CIRP, 2018, 69, 944-949.	1.9	28
51	Automated Disassembly of Electronic Components: Feasibility and Technical Implementation., 2018,,.		4
52	CAD feature recognition as a means to prevent ergonomics issues during manual assembly tasks. Computer-Aided Design and Applications, 2018, 15, 734-746.	0.6	5
53	Virtual Reality-Enhanced Configuration Design of Customized Workplaces: a Case Study of Ship Bridge System. Computer-Aided Design and Applications, 2018, 16, 345-357.	0.6	5
54	A Digitally-enabled Integrated Approach to Design and Manufacture Shoe Lasts. Computer-Aided Design and Applications, 2018, 16, 593-610.	0.6	4

#	Article	IF	CITATIONS
55	A design for EoL approach and metrics to favour closed-loop scenarios for products. International Journal of Sustainable Engineering, 2017, 10, 136-146.	3.5	47
56	A Software Tool for the Analysis and Management of Resource Consumptions and Environmental Impacts of Manufacturing Plants. Procedia CIRP, 2017, 61, 341-346.	1.9	2
57	Traceability as a means to investigate supply chain sustainability: the real case of a leather shoe supply chain. International Journal of Production Research, 2017, 55, 6638-6652.	7. 5	51
58	A Collaborative End of Life platform to Favour the Reuse of Electronic Components. Procedia CIRP, 2017, 61, 166-171.	1.9	13
59	Lifecycle Tools As a Support for the Eco-Design Innovation of Domestic Appliances. , 2017, , .		1
60	Environmental Sustainability Awareness in Product Design Practices: A Survey of Italian Companies. , 2017, , .		2
61	A 4M Approach for a Comprehensive Analysis and Improvement of Manual Assembly Lines. Procedia Manufacturing, 2017, 11, 1510-1518.	1.9	18
62	A Bridge Between CAD and LCA to Optimise the Life Cycle Inventory Phase. Smart Innovation, Systems and Technologies, 2016, , 549-560.	0.6	1
63	PLANTLCA: A Lifecycle Approach to Map and Characterize Resource Consumptions and Environmental Impacts of Manufacturing Plants. Procedia CIRP, 2016, 48, 146-151.	1.9	14
64	Includes Knowledge of Dismantling Centers in the Early Design Phase: A Knowledge-based Design for Disassembly Approach. Procedia CIRP, 2016, 48, 401-406.	1.9	20
65	A Lifecycle-enhanced Global Manufacturing Platform for Enterprises. Procedia CIRP, 2016, 52, 192-197.	1.9	2
66	An approach to foster eco-design in 'traditional' companies without eco-knowledge. International Journal of Productivity and Quality Management, 2016, 18, 150.	0.2	1
67	Disassembly Knowledge Classification and Potential Application: A Preliminary Analysis on a Washing Machine. , 2016, , .		3
68	A Decision Support Tool to Foster Sustainability in Industrial Context. , 2016, , .		1
69	Usability Demonstration of the G.EN.ESI Eco-Design Platform: The Cooker Hood Case Study. , 2015, , .		0
70	A System to Increase the Sustainability and Traceability of Supply Chains. Procedia CIRP, 2015, 29, 227-232.	1.9	27
71	A Method for the Estimation of the Economic and Ecological Sustainability of Production Lines. Procedia CIRP, 2014, 15, 147-152.	1.9	22
72	Eco-Design Platform Within an Extended Enterprise: How to Implement It?., 2014,,.		1

#	Article	IF	Citations
73	An Approach to Analytically Evaluate the Product Disassemblability during the Design Process. Procedia CIRP, 2014, 21, 336-341.	1.9	19
74	An integrated approach and IT platform to optimise electric motor engineering and design. International Journal of Information Technology and Management, 2014, 13, 134.	0.1	2
75	End-of-Life Indices to Manage the Demanufacturing Phase during the Product Design Process. , 2014, , 339-344.		1
76	Tool for Life Cycle Costing of Electric Motors during the Early Design Phases. , 2014, , 431-436.		3
77	Integrated Software Platform for Green Engineering Design and Product Sustainability., 2013,, 87-92.		9
78	A Methodology and a Software Platform to Implement an Eco-Design Strategy in a Manufacturing Company. , 2013, , .		3
79	Innovative software platform for eco-design of efficient electric motors. Journal of Cleaner Production, 2012, 37, 125-134.	9.3	25
80	Promoting and Managing End-of-Life Closed-Loop Scenarios of Products Using a Design for Disassembly Evaluation Tool., 2012,,.		6
81	LeanDfd: A Design for Disassembly Approach to Evaluate the Feasibility of Different End-of-Life Scenarios for Industrial Products. , 2012, , 215-220.		7
82	EROD: New collaborative design platform for developing energy efficient electric motors. , $2011,$, .		1
83	CAD Feature Recognition as a Means to Prevent Ergonomics Issues during Manual Assembly Tasks. , 0, , .		1
84	An Analytical Cost Estimation Approach for Generic Sheet Metal 3D Models. , 0, , .		0
85	Virtual Reality-Enhanced Configuration Design of Customized Workplaces: a Case Study of Ship Bridge System. , 0, , .		0
86	A Digitally-enabled Integrated Approach to Design and Manufacture Shoe Lasts. , 0, , .		0