Ewa Rogalska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/511338/publications.pdf

Version: 2024-02-01

85 papers

2,353 citations

218677
26
h-index

233421 45 g-index

87 all docs

87 docs citations

87 times ranked

1906 citing authors

#	Article	IF	CITATIONS
1	The lung surfactant activity probed with molecular dynamics simulations. Advances in Colloid and Interface Science, 2022, 304, 102659.	14.7	6
2	The Molecular Bases of the Interaction between a Saponin from the Roots of Gypsophila paniculata L. and Model Lipid Membranes. International Journal of Molecular Sciences, 2022, 23, 3397.	4.1	3
3	The hydrophobic core effect in model bacterial membranes upon interaction with tetra-p-guanidinoethylcalix[4]arene. Journal of Molecular Liquids, 2021, 343, 117636.	4.9	3
4	Lung surfactant monolayer – A good natural barrier against dibenzo-p-dioxins. Chemosphere, 2020, 240, 124850.	8.2	7
5	A way to introducing a hydrophilic bioactive agent into model lipid membranes. The role of cetyl palmitate in the interaction of curcumin with $1,2$ -dioleoyl-sn-glycero- 3 -phosphatidylcholine monolayers. Journal of Molecular Liquids, 2020, 308, 113040 .	4.9	9
6	The interaction of an amphiphile crown ether with divalent metal ions. An electrochemical, Langmuir film, and molecular modeling study. Thin Solid Films, 2019, 683, 49-56.	1.8	4
7	Triggering Tautomerization of Curcumin by Confinement into Liposomes. ChemPhotoChem, 2019, 3, 1034-1041.	3.0	14
8	The effect of protonation in a family of peptide based gemini amphiphiles on the interaction in Langmuir films. Journal of Molecular Liquids, 2019, 284, 357-365.	4.9	2
9	The impact of lipid oxidation on the functioning of a lung surfactant model. Physical Chemistry Chemical Physics, 2018, 20, 24968-24978.	2.8	15
10	Nanoscale investigation of the interaction of colistin with model phospholipid membranes by Langmuir technique, and combined infrared and force spectroscopies. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2592-2602.	2.6	17
11	Structure â¿¿ membrane activity relationship in a family of peptide-based gemini amphiphiles: An insight from experimental and theoretical model systems. Colloids and Surfaces B: Biointerfaces, 2016, 146, 54-62.	5.0	9
12	Two antibacterial nalidixate calixarene derivatives in cholesterol monolayers: Molecular dynamics and physicochemical effects. Colloids and Surfaces B: Biointerfaces, 2016, 145, 777-784.	5.0	10
13	A model of compression isotherms for analyzing particle layers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 128-135.	4.7	6
14	The selective interactions of cationic tetra-p-guanidinoethylcalix[4] arene with lipid membranes: theoretical and experimental model studies. Soft Matter, 2016, 12, 181-190.	2.7	17
15	Impact of two different saponins on the organization of model lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1963-1973.	2.6	43
16	Molecular Organization of Nalidixate Conjugated Calixarenes in Bacterial Model Membranes Probed by Molecular Dynamics Simulation and Langmuir Monolayer Studies. Journal of Physical Chemistry B, 2015, 119, 2990-3000.	2.6	14
17	Effect of products of PLA2 catalyzed hydrolysis of DLPC on motion of rising bubbles. Colloids and Surfaces B: Biointerfaces, 2015, 128, 261-267.	5.0	5
18	A Study of the Interaction between a Family of Gemini Amphiphilic Pseudopeptides and Model Monomolecular Film Membranes Formed with a Cardiolipin. Journal of Physical Chemistry B, 2015, 119, 6668-6679.	2.6	12

#	Article	IF	Citations
19	A Langmuir monolayer study of the action of phospholipase A2 on model phospholipid and mixed phospholipid-GM1 ganglioside membranes. Colloids and Surfaces B: Biointerfaces, 2014, 116, 389-395.	5.0	9
20	Vibrational, calorimetric, and molecular conformational study on calcein interaction with model lipid membrane. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	12
21	Interaction of a \hat{I}^2 -lactam calixarene derivative with a model eukaryotic membrane affects the activity of PLA2. Colloids and Surfaces B: Biointerfaces, 2013, 103, 217-222.	5.0	19
22	Effects of gemini amphiphilic pseudopeptides on model lipid membranes: A Langmuir monolayer study. Colloids and Surfaces B: Biointerfaces, 2013, 102, 659-666.	5.0	22
23	Temperature-dependent adsorption of surfactant molecules and associated crystallization kinetics of noncentrosymmetric Fe(IO3)3 nanorods in microemulsions. Materials Research Bulletin, 2013, 48, 4431-4437.	5.2	3
24	Penetration of Milk-Derived Antimicrobial Peptides into Phospholipid Monolayers as Model Biomembranes. Biochemistry Research International, 2013, 2013, 1-16.	3.3	4
25	Organosoluble calixarene-based quinolone carriers: syntheses, evaluation and model hydrolytic studies at the air–water interface. New Journal of Chemistry, 2012, 36, 78-85.	2.8	8
26	Preparation of meloxicam–β-cyclodextrin–polyethylene glycol 6000 ternary system: characterization, <i>in vitro</i> in vivobioavailability. Pharmaceutical Development and Technology, 2012, 17, 632-637.	2.4	7
27	New potential prodrugs of aciclovir using calix[4]arene as a lipophilic carrier: synthesis and drug-release studies at the air–water interface. New Journal of Chemistry, 2012, 36, 2060.	2.8	10
28	Structuring of supported hybrid phospholipid bilayers on electrodes with phospholipase A2. Physical Chemistry Chemical Physics, 2011, 13, 9716.	2.8	9
29	Phospholipase A2 activity on supported thiolipid monolayers monitored by electrochemical and SPR methods. Journal of Electroanalytical Chemistry, 2011, 660, 360-366.	3.8	9
30	Enzymatic Probing of Model Lipid Membranes: Phospholipase A2 Activity toward Monolayers Modified by Oxicam NSAIDs. Journal of Physical Chemistry B, 2011, 115, 9290-9298.	2.6	17
31	Glycolipid–cholesterol monolayers: Towards a better understanding of the interaction between the membrane components. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2466-2476.	2.6	21
32	Membrane Activity of Tetra- $\langle i \rangle p \langle j \rangle$ -guanidinoethylcalix[4] arene as a Possible Reason for Its Antibacterial Properties. Journal of Physical Chemistry B, 2011, 115, 15002-15012.	2.6	36
33	Differentiating Oxicam Nonsteroidal Anti-Inflammatory Drugs in Phosphoglyceride Monolayers. Langmuir, 2010, 26, 3485-3492.	3.5	31
34	The Mechanism of Metal Cation Binding in Two Nalidixate Calixarene Conjugates. A Langmuir Film and Molecular Modeling Study. Journal of Physical Chemistry B, 2010, 114, 10427-10435.	2.6	20
35	Interaction of amphiphilic chlorin-based photosensitizers with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine monolayers. Chemistry and Physics of Lipids, 2009, 158, 102-109.	3.2	18
36	The affinity of two antimicrobial peptides derived from bovine milk proteins for model lipid membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 343, 104-110.	4.7	22

#	Article	IF	CITATIONS
37	Meloxicam and Meloxicam-β-Cyclodextrin Complex in Model Membranes: Effects on the Properties and Enzymatic Lipolysis of Phospholipid Monolayers in Relation to Anti-inflammatory Activity. Langmuir, 2009, 25, 1417-1426.	3.5	26
38	Upper-rim alternately tethered \hat{l}_{\pm} -cyclodextrin molecular receptors: synthesis, metal complexation and interfacial behavior. New Journal of Chemistry, 2009, 33, 554-560.	2.8	14
39	DFT Study on the Selectivity of Complexation of Metal Cations with a Dioxadithia Crown Ether Ligand. Journal of Physical Chemistry A, 2008, 112, 13633-13640.	2.5	14
40	Complexation of Metal Ions in Langmuir Films Formed with Two Amphiphilic Dioxadithia Crown Ethers. Journal of Physical Chemistry B, 2008, 112, 10953-10963.	2.6	8
41	Interfacial Approach to Polyaromatic Hydrocarbon Toxicity: Phosphoglyceride and Cholesterol Monolayer Response to Phenantrene, Anthracene, Pyrene, Chrysene, and Benzo[a]pyrene. Journal of Physical Chemistry B, 2008, 112, 13518-13531.	2.6	24
42	Impact of Aluminum on the Oxidation of Lipids and Enzymatic Lipolysis in Monomolecular Films at the Air/Water Interface. Langmuir, 2007, 23, 3338-3348.	3.5	17
43	Electron-Donorâ^'Acceptor Fullerene Derivative Retained on Electrodes Using SC3 Hydrophobin. Journal of Physical Chemistry C, 2007, 111, 1176-1179.	3.1	8
44	Calixarenes in a Membrane Environment: A Monolayer Study on the Miscibility of Threep-tert-Butylcalix[4]arene β-Lactam Derivatives with 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine. Journal of Physical Chemistry B, 2007, 111, 13231-13242.	2.6	37
45	Interactions of a Fungistatic Antibiotic, Griseofulvin, with Phospholipid Monolayers Used as Models of Biological Membranes. Langmuir, 2006, 22, 7701-7711.	3. 5	43
46	Analytical Investigation of the Interactions between SC3 Hydrophobin and Lipid Layers:Â Elaborating of Nanostructured Matrixes for Immobilizing Redox Systems. Analytical Chemistry, 2006, 78, 4850-4864.	6.5	29
47	A Langmuir film approach to elucidating interactions in lipid membranes: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/cholesterol/metal cation systems. Chemistry and Physics of Lipids, 2006, 144, 127-136.	3.2	50
48	Modified electrodes based on lipidic cubic phases. Bioelectrochemistry, 2005, 66, 3-8.	4.6	30
49	Preparing Catalytic Surfaces for Sensing Applications by Immobilizing Enzymes via Hydrophobin Layers. Analytical Chemistry, 2005, 77, 1622-1630.	6.5	67
50	Enantiomeric Recognition of Amino Acids by Amphiphilic Crown Ethers in Langmuir Monolayers. Langmuir, 2004, 20, 6259-6267.	3.5	36
51	Formation of Langmuir Layers and Surface Modification Using New Upper-Rim Fully Tethered Bipyridinyl or Bithiazolyl Cyclodextrins and Their Fluorescent Metal Complexes. Langmuir, 2004, 20, 5338-5346.	3. 5	9
52	Organization of Four Thermotropic Liquid Crystals of Different Polarities on Model Liquid and Solid Surfaces. Langmuir, 2004, 20, 7991-7997.	3.5	7
53	Electrodes Modified with Monoolein Cubic Phases Hosting Laccases for the Catalytic Reduction of Dioxygen. Analytical Chemistry, 2004, 76, 283-291.	6.5	60
54	A thermodynamic approach to understanding liquid crystal selectivity in gas chromatography. Chromatographia, 2003, 57, 249-253.	1.3	22

#	Article	IF	CITATIONS
55	Interfacial Approach to Aluminum Toxicity:Â Interactions of Al(III) and Pr(III) with Model Phospholipid Bilayer and Monolayer Membranes. Langmuir, 2003, 19, 8697-8708.	3.5	15
56	Probing Inter- and Intramolecular Interactions of Six New p-tert-Butylcalix[4]arene-Based Bipyridyl Podands with Langmuir Monolayers. Langmuir, 2002, 18, 8854-8861.	3 . 5	23
57	A Concept for Immobilizing Catalytic Complexes on Electrodes:Â Cubic Phase Layers for Carbon Dioxide Sensing. Analytical Chemistry, 2002, 74, 1554-1559.	6.5	27
58	Fluorinated and hydrogenated cubic phases as matrices for immobilisation of cholesterol oxidase on electrodes. Physical Chemistry Chemical Physics, 2001, 3, 240-245.	2.8	34
59	Modification of Electrodes with Self-Assembled Hydrophobin Layers. Journal of Physical Chemistry B, 2001, 105, 9772-9777.	2.6	45
60	Thermodynamic and interfacial study of two liquid crystals substituted with polyethylene oxyde (POE) chains. Journal of Molecular Liquids, 2001, 94, 221-231.	4.9	4
61	Formation and properties of Langmuir and Gibbs monolayers: a comparative study using hydrogenated and partially fluorinated amphiphilic derivatives of mannitol. Chemistry and Physics of Lipids, 2000, 105, 71-91.	3.2	26
62	Derivatives of glutamic acid as new surfactants>. Amino Acids, 2000, 18, 89-100.	2.7	6
63	Self-assembly of chlorophenols in water. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6577-6580.	7.1	16
64	Stacking phenomena in polyaromatic compounds. Thermochimica Acta, 1999, 325, 119-124.	2.7	11
65	Synthesis and properties of two new liquid crystals: an analytical and thermodynamic study. Journal of Chromatography A, 1999, 859, 59-67.	3.7	17
66	Lipase stereo- and regio-selectivity towards tri- and di-acylglycerols. Biochemical Society Transactions, 1997, 25, 161-164.	3.4	32
67	In vivo and in vitro studies on the stereoselective hydrolysis of tri- and diglycerides by gastric and pancreatic lipases. Bioorganic and Medicinal Chemistry, 1997, 5, 429-435.	3.0	79
68	Phosphate-binding Sites in Phosphorylating glyceraldehyde-3-phosphate Dehydrogenase from Bacillus stearothermophilus. FEBS Journal, 1996, 235, 641-647.	0.2	21
69	The Kinetics, Specificities and Structural Features of Lipases. , 1996, , 265-304.		10
70	The Kinetics, Specificities and Structural Features of Lipases. , 1996, , 143-182.		7
71	Lipase stereoselectivity and regioselectivity toward three isomers of dicaprin: A kinetic study by the monomolecular film technique. Chirality, 1995, 7, 505-515.	2.6	62
72	Kinetics of the spreading of Intralipidâ,,¢ emulsions at the air-water interface. Colloids and Surfaces B: Biointerfaces, 1995, 4, 213-220.	5 . O	4

#	Article	IF	CITATIONS
73	Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality, 1993, 5, 24-30.	2.6	241
74	Controlling lipase stereoselectivity via the surface pressure Journal of Biological Chemistry, 1993, 268, 792-794.	3.4	64
75	Controlling lipase stereoselectivity via the surface pressure. Journal of Biological Chemistry, 1993, 268, 792-4.	3.4	49
76	Stereochemistry of the isoprenylation of tryptophan catalyzed by 4-(.gamma.,.gammadimethylallyl)tryptophan synthase from Claviceps, the first pathway-specific enzyme in ergot alkaloid biosynthesis. Journal of the American Chemical Society, 1990, 112, 297-304.	13.7	64
77	Stereoselectivity of lipases. I. Hydrolysis of enantiomeric glyceride analogues by gastric and pancreatic lipases, a kinetic study using the monomolecular film technique. Journal of Biological Chemistry, 1990, 265, 20263-20270.	3.4	70
78	Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases. Journal of Biological Chemistry, 1990, 265, 20271-20276.	3.4	156
79	Stereoselectivity of lipases. I. Hydrolysis of enantiomeric glyceride analogues by gastric and pancreatic lipases, a kinetic study using the monomolecular film technique. Journal of Biological Chemistry, 1990, 265, 20263-70.	3.4	48
80	Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases. Journal of Biological Chemistry, 1990, 265, 20271-6.	3.4	106
81	Human milk bile-salt stimulated lipase: further investigations on the amino-acids residues involved in the catalytic site. Lipids and Lipid Metabolism, 1989, 1002, 225-230.	2.6	16
82	A cross-linked complex between horse pancreatic lipase and colipase. FEBS Letters, 1989, 257, 443-446.	2.8	15
83	Purification of pancreatic carboxylic-ester hydrolase by immunoaffinity and its application to the human bile-salt-stimulated lipase. Lipids and Lipid Metabolism, 1988, 961, 299-308.	2.6	74
84	Diastereoface-differentiating synthesis of substituted .betalactams from chiral imines and/or chiral .alphachloro iminium chlorides. Journal of Organic Chemistry, 1984, 49, 1397-1402.	3.2	26
85	Asymmetric synthesis of \hat{l}^2 -lactams. Journal of the Chemical Society Chemical Communications, 1981 , .	2.0	11