Michael Xi Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113277/publications.pdf Version: 2024-02-01

ΜΙCHAFL XI 7ΗΠ

#	Article	IF	CITATIONS
1	S-acylation of Orai1 regulates store-operated Ca2+ entry. Journal of Cell Science, 2022, 135, .	1.2	13
2	CAMK2/CaMKII activates MLKL in short-term starvation to facilitate autophagic flux. Autophagy, 2022, 18, 726-744.	4.3	25
3	Ameliorating cancer cachexia by inhibiting cancer cell release of Hsp70 and Hsp90 with omeprazole. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 636-647.	2.9	15
4	Sarco/endoplasmic reticulum Ca ²⁺ â€ATPase (SERCA2b) mediates oxidationâ€induced endoplasmic reticulum stress to regulate neuropathic pain. British Journal of Pharmacology, 2022, 179, 2016-2036.	2.7	10
5	ASIC1a senses lactate uptake to regulate metabolism in neurons. Redox Biology, 2022, 51, 102253.	3.9	10
6	Pharmacological Validation of ASIC1a as a Druggable Target for Neuroprotection in Cerebral Ischemia Using an Intravenously Available Small Molecule Inhibitor. Frontiers in Pharmacology, 2022, 13, 849498.	1.6	6
7	Identification of an arthropod molecular target for plant-derived natural repellents. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118152119.	3.3	5
8	Transient Receptor Potential channels (TRP) in GtoPdb ν.2022.1. IUPHAR/BPS Guide To Pharmacology CITE, 2022, 2022, .	0.2	0
9	The long β2,3-sheets encoded by redundant sequences play an integral role in the channel function of P2X7 receptors. Journal of Biological Chemistry, 2022, 298, 102002.	1.6	3
10	TRPC4 and GIRK channels underlie neuronal coding of firing patterns that reflect G _{q/11} –G _{i/o} coincidence signals of variable strengths. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120870119.	3.3	7
11	TRPV1 SUMOylation suppresses itch by inhibiting TRPV1 interaction with H1 receptors. Cell Reports, 2022, 39, 110972.	2.9	5
12	The Three Two-Pore Channel Subtypes from Rabbit Exhibit Distinct Sensitivity to Phosphoinositides, Voltage, and Extracytosolic pH. Cells, 2022, 11, 2006.	1.8	4
13	Scutellarein attenuates atopic dermatitis by selectively inhibiting transient receptor potential vanilloid 3 channels. British Journal of Pharmacology, 2022, 179, 4792-4808.	2.7	14
14	Dynamic tripartite construct of interregional engram circuits underlies forgetting of extinction memory. Molecular Psychiatry, 2022, 27, 4077-4091.	4.1	8
15	TRPV3 enhances skin keratinocyte proliferation through EGFR-dependent signaling pathways. Cell Biology and Toxicology, 2021, 37, 313-330.	2.4	31
16	Postsynaptic Targeting and Mobility of Membrane Surface-Localized hASIC1a. Neuroscience Bulletin, 2021, 37, 145-165.	1.5	10
17	Serotonin enhances depolarizing spontaneous fluctuations, excitability, and ongoing activity in isolated rat DRG neurons via 5-HT4 receptors and cAMP-dependent mechanisms. Neuropharmacology, 2021, 184, 108408.	2.0	22
18	The Role of S-Acylation in the Regulation of Store-Operated Calcium Entry. Biophysical Journal, 2021, 120, 53a.	0.2	0

#	Article	IF	CITATIONS
19	The interplay between SUMOylation and phosphorylation of PKCδ facilitates oxidative stressâ€induced apoptosis. FEBS Journal, 2021, 288, 6447-6464.	2.2	4
20	Transient Receptor Potential channels (TRP) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	1
21	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	2.7	187
22	GSK1702934A and M085 directly activate TRPC6 via a mechanism of stimulating the extracellular cavity formed by the pore helix and transmembrane helix S6. Journal of Biological Chemistry, 2021, 297, 101125.	1.6	10
23	A conserved residue in the P2X4 receptor has a nonconserved function in ATP recognition. Journal of Biological Chemistry, 2021, 296, 100655.	1.6	4
24	Input associativity underlies fear memory renewal. National Science Review, 2021, 8, nwab004.	4.6	11
25	Mechanisms of proton inhibition and sensitization of the cation channel TRPV3. Journal of General Physiology, 2021, 153, .	0.9	8
26	PKCÎμ SUMOylation Is Required for Mediating the Nociceptive Signaling of Inflammatory Pain. Cell Reports, 2020, 33, 108191.	2.9	6
27	TRPC channels: Structure, function, regulation and recent advances in small molecular probes. , 2020, 209, 107497.		126
28	TRPM8 as the rapid testosterone signaling receptor: Implications in the regulation of dimorphic sexual and social behaviors. FASEB Journal, 2020, 34, 10887-10906.	0.2	23
29	Intracellular acidification facilitates receptorâ€operated TRPC4 activation through PLCδ1 in a Ca ²⁺ â€dependent manner. Journal of Physiology, 2020, 598, 2651-2667.	1.3	10
30	Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury. Cell Calcium, 2020, 88, 102198.	1.1	49
31	Olig2 SUMOylation protects against genotoxic damage response by antagonizing p53 gene targeting. Cell Death and Differentiation, 2020, 27, 3146-3161.	5.0	21
32	Activation of BK Channels Prevents Hepatic Stellate Cell Activation and Liver Fibrosis Through the Suppression of TGFβ1/SMAD3 and JAK/STAT3 Profibrotic Signaling Pathways. Frontiers in Pharmacology, 2020, 11, 165.	1.6	19
33	TRPC4 as a coincident detector of Gi/o and Gq/11 signaling: mechanisms and pathophysiological implications. Current Opinion in Physiology, 2020, 17, 34-41.	0.9	4
34	Voltage-dependent modulation of TRPA1 currents by diphenhydramine. Cell Calcium, 2020, 90, 102245.	1.1	2
35	Disruption of auto-inhibition underlies conformational signaling of ASIC1a to induce neuronal necroptosis. Nature Communications, 2020, 11, 475.	5.8	56
36	ASIC1a channels regulate mitochondrial ion signaling and energy homeostasis in neurons. Journal of Neurochemistry, 2020, 153, 203-215.	2.1	14

#	Article	IF	CITATIONS
37	DUSP6 SUMOylation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation. Science Advances, 2020, 6, eaaz0361.	4.7	42
38	Contribution of TRPC Channels in Neuronal Excitotoxicity Associated With Neurodegenerative Disease and Ischemic Stroke. Frontiers in Cell and Developmental Biology, 2020, 8, 618663.	1.8	18
39	Reply to "TRPA1-dependent calcium transients and CGRP release in DRG neurons require extracellular calcium― Journal of Cell Biology, 2020, 219, .	2.3	2
40	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	2.7	242
41	VPAC1 couples with TRPV4 channel to promote calcium-dependent gastric cancer progression via a novel autocrine mechanism. Oncogene, 2019, 38, 3946-3961.	2.6	34
42	Protein Kinase C Lambda Mediates Acid-Sensing Ion Channel 1a-Dependent Cortical Synaptic Plasticity and Pain Hypersensitivity. Journal of Neuroscience, 2019, 39, 5773-5793.	1.7	23
43	Central Processing of Itch in the Midbrain Reward Center. Neuron, 2019, 102, 858-872.e5.	3.8	53
44	The Interplay between NAADP and PI(3,5)P2 in the Activation of Lysosomal Two-Pore Channel 2. Biophysical Journal, 2019, 116, 384a.	0.2	0
45	Altered allostery of the left flipper domain underlies the weak ATP response of rat P2X5 receptors. Journal of Biological Chemistry, 2019, 294, 19589-19603.	1.6	9
46	Rapid affinity purification of intracellular organelles using twin strep tag. Journal of Cell Science, 2019, 132, .	1.2	34
47	Transient Receptor Potential channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	7
48	TRPV1 SUMOylation regulates nociceptive signaling in models of inflammatory pain. Nature Communications, 2018, 9, 1529.	5.8	52
49	Druggable negative allosteric site of P2X3 receptors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4939-4944.	3.3	73
50	PD-1 blocks lytic granule polarization with concomitant impairment of integrin outside-in signaling in the natural killer cell immunological synapse. Journal of Allergy and Clinical Immunology, 2018, 142, 1311-1321.e8.	1.5	13
51	mTORC1 controls lysosomal Ca ²⁺ release through the two-pore channel TPC2. Science Signaling, 2018, 11, .	1.6	59
52	Molecular mechanism underlying the subtype-selectivity of competitive inhibitor NF110 and its distinct potencies in human and rat P2X3 receptors. Science Bulletin, 2018, 63, 1616-1625.	4.3	14
53	Fear extinction requires ASIC1a-dependent regulation of hippocampal-prefrontal correlates. Science Advances, 2018, 4, eaau3075.	4.7	46
54	A novel TRPC6-dependent mechanism of TGF-β-induced migration and invasion of human hepatocellular carcinoma cells. Science China Life Sciences, 2018, 61, 1120-1122.	2.3	5

#	Article	IF	CITATIONS
55	GABAB Receptors Augment TRPC3-Mediated Slow Excitatory Postsynaptic Current to Regulate Cerebellar Purkinje Neuron Response to Type-1 Metabotropic Glutamate Receptor Activation. Cells, 2018, 7, 90.	1.8	10
56	Pyrazolo[1,5-a]pyrimidine TRPC6 antagonists for the treatment of gastric cancer. Cancer Letters, 2018, 432, 47-55.	3.2	45
57	The acid-sensing ion channel ASIC1a mediates striatal synapse remodeling and procedural motor learning. Science Signaling, 2018, 11, .	1.6	29
58	Pyrazolopyrimidines as Potent Stimulators for Transient Receptor Potential Canonical 3/6/7 Channels. Journal of Medicinal Chemistry, 2017, 60, 4680-4692.	2.9	44
59	Loss of Smooth Muscle α-Actin Leads to NF-κB–Dependent Increased Sensitivity to Angiotensin II in Smooth Muscle Cells and Aortic Enlargement. Circulation Research, 2017, 120, 1903-1915.	2.0	48
60	A well-known potassium channel plays a critical role in lysosomes. Journal of Cell Biology, 2017, 216, 1513-1515.	2.3	4
61	Dynamic coupling between TRPV4 and Ca2+-activated SK1/3 and IK1 K+ channels plays a critical role in regulating the K+-secretory BK channel in kidney collecting duct cells. American Journal of Physiology - Renal Physiology, 2017, 312, F1081-F1089.	1.3	15
62	Calcium Promotes Human Gastric Cancer via a Novel Coupling of Calcium-Sensing Receptor and TRPV4 Channel. Cancer Research, 2017, 77, 6499-6512.	0.4	87
63	Skeletal Muscle Lysosomal Function via Cathepsin Activity Measurement. Methods in Molecular Biology, 2017, 1854, 35-43.	0.4	10
64	New Aspects of the Contribution of ER to SOCE Regulation: TRPC Proteins as a Link Between Plasma Membrane Ion Transport and Intracellular Ca2+ Stores. Advances in Experimental Medicine and Biology, 2017, 993, 239-255.	0.8	16
65	Acidosis counteracts itch tachyphylaxis to consecutive pruritogen exposure dependent on acid-sensing ion channel 3. Molecular Pain, 2017, 13, 174480691772111.	1.0	7
66	Benzimidazole derivative M084 extends the lifespan of Caenorhabditis elegans in a DAF-16/FOXO-dependent way. Molecular and Cellular Biochemistry, 2017, 426, 101-109.	1.4	11
67	The nonproton ligand of acid-sensing ion channel 3 activates mollusk-specific FaNaC channels via a mechanism independent of the native FMRFamide peptide. Journal of Biological Chemistry, 2017, 292, 21662-21675.	1.6	11
68	Selective potentiation of 2-APB-induced activation of TRPV1–3 channels by acid. Scientific Reports, 2016, 6, 20791.	1.6	25
69	ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion. Nature Communications, 2016, 7, 13770.	5.8	50
70	Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms. Scientific Reports, 2016, 6, 23350.	1.6	41
71	Regulator of G-protein signalling and GoLoco proteins suppress TRPC4 channel function via acting at Gαi/o. Biochemical Journal, 2016, 473, 1379-1390.	1.7	9
72	Regulation of lysosomal ion homeostasis by channels and transporters. Science China Life Sciences, 2016, 59, 777-791.	2.3	84

#	Article	IF	CITATIONS
73	SUMO-specific protease 1 protects neurons from apoptotic death during transient brain ischemia/reperfusion. Cell Death and Disease, 2016, 7, e2484-e2484.	2.7	34
74	Phospholipase D1-regulated autophagy supplies free fatty acids to counter nutrient stress in cancer cells. Cell Death and Disease, 2016, 7, e2448-e2448.	2.7	29
75	The hills and valleys of calcium signaling. Science China Life Sciences, 2016, 59, 743-748.	2.3	7
76	Intracellular TRPA1 mediates Ca2+ release from lysosomes in dorsal root ganglion neurons. Journal of Cell Biology, 2016, 215, 369-381.	2.3	47
77	Critical roles of G _{i/o} proteins and phospholipase C-δ1 in the activation of receptor-operated TRPC4 channels. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1092-1097.	3.3	59
78	Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney. PLoS ONE, 2016, 11, e0155006.	1.1	12
79	ASIC3 Mediates Itch Sensation in Response to Coincident Stimulation by Acid and Nonproton Ligand. Cell Reports, 2015, 13, 387-398.	2.9	25
80	Tissue acidosis induces neuronal necroptosis via ASIC1a channel independent of its ionic conduction. ELife, 2015, 4, .	2.8	118
81	Acute Treatment with a Novel TRPC4/C5 Channel Inhibitor Produces Antidepressant and Anxiolytic-Like Effects in Mice. PLoS ONE, 2015, 10, e0136255.	1.1	44
82	The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium, 2015, 58, 48-56.	1.1	166
83	Posttraumatic Stress Disorder-Like Induction Elevates β-Amyloid Levels, Which Directly Activates Corticotropin-Releasing Factor Neurons to Exacerbate Stress Responses. Journal of Neuroscience, 2015, 35, 2612-2623.	1.7	64
84	Lysosomal Two-pore Channel Subtype 2 (TPC2) Regulates Skeletal Muscle Autophagic Signaling. Journal of Biological Chemistry, 2015, 290, 3377-3389.	1.6	69
85	Organelle-specific Subunit Interactions of the Vertebrate Two-pore Channel Family. Journal of Biological Chemistry, 2015, 290, 1086-1095.	1.6	24
86	Molecular mechanisms of functional natural killer deficiency in patients with partial DiGeorge syndrome. Journal of Allergy and Clinical Immunology, 2015, 135, 1293-1302.	1.5	23
87	Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. Journal of Cell Biology, 2015, 209, 879-894.	2.3	108
88	Canonical transient receptor potential 4 and its small molecule modulators. Science China Life Sciences, 2015, 58, 39-47.	2.3	8
89	Identification and optimization of 2â€aminobenzimidazole derivatives as novel inhibitors of <scp>TRPC</scp> 4 and <scp>TRPC</scp> 5 channels. British Journal of Pharmacology, 2015, 172, 3495-3509.	2.7	38
90	Diminished MTORC1-Dependent JNK Activation Underlies the Neurodevelopmental Defects Associated with Lysosomal Dysfunction. Cell Reports, 2015, 12, 2009-2020.	2.9	25

#	Article	IF	CITATIONS
91	Imaging of Cell–Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics. Journal of Immunology, 2015, 195, 1320-1330.	0.4	49
92	Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science, 2015, 349, 873-876.	6.0	243
93	Lysosomal ATP transport mechanism and its significance. FASEB Journal, 2015, 29, 566.14.	0.2	1
94	Drosophila TRPML Forms PI(3,5)P2-activated Cation Channels in Both Endolysosomes and Plasma Membrane. Journal of Biological Chemistry, 2014, 289, 4262-4272.	1.6	62
95	Differential mechanisms of action of the mucolipin synthetic agonist, ML-SA1, on insect TRPML and mammalian TRPML1. Cell Calcium, 2014, 56, 446-456.	1.1	29
96	Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation. Nature Communications, 2014, 5, 4980.	5.8	46
97	Bimodal voltage dependence of TRPA1: mutations of a key pore helix residue reveal strong intrinsic voltage-dependent inactivation. Pflugers Archiv European Journal of Physiology, 2014, 466, 1273-1287.	1.3	19
98	p75 Regulates Purkinje Cell Firing by Modulating SK Channel Activity through Rac1. Journal of Biological Chemistry, 2014, 289, 31458-31472.	1.6	16
99	P2X4 Forms Functional ATP-activated Cation Channels on Lysosomal Membranes Regulated by Luminal pH. Journal of Biological Chemistry, 2014, 289, 17658-17667.	1.6	115
100	Dual depolarization responses generated within the same lateral septal neurons by TRPC4-containing channels. Pflugers Archiv European Journal of Physiology, 2014, 466, 1301-1316.	1.3	21
101	Changes in Spontaneous Firing Patterns of Cerebellar Purkinje Cells in p75 Knockout Mice. Cerebellum, 2013, 12, 300-303.	1.4	5
102	2-Guanidine-4-methylquinazoline acts as a novel competitive antagonist of A type Î ³ -aminobutyric acid receptors. Neuropharmacology, 2013, 75, 126-137.	2.0	14
103	Serotonin Facilitates Peripheral Pain Sensitivity in a Manner That Depends on the Nonproton Ligand Sensing Domain of ASIC3 Channel. Journal of Neuroscience, 2013, 33, 4265-4279.	1.7	58
104	Synthesis, biological evaluation and molecular modeling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorganic and Medicinal Chemistry, 2013, 21, 4218-4224.	1.4	43
105	Molecular Mechanism of Constitutive Endocytosis of Acid-Sensing Ion Channel 1a and Its Protective Function in Acidosis-Induced Neuronal Death. Journal of Neuroscience, 2013, 33, 7066-7078.	1.7	41
106	Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11011-11016.	3.3	109
107	Conserved Gating Elements in TRPC4 and TRPC5 Channels. Journal of Biological Chemistry, 2013, 288, 19471-19483.	1.6	50
108	Scaffolding by A-Kinase Anchoring Protein Enhances Functional Coupling between Adenylyl Cyclase and TRPV1 Channel, Journal of Biological Chemistry, 2013, 288, 3929-3937	1.6	43

#	Article	IF	CITATIONS
109	PI3-kinase/Akt Pathway-Regulated Membrane Insertion of Acid-Sensing Ion Channel 1a Underlies BDNF-Induced Pain Hypersensitivity. Journal of Neuroscience, 2012, 32, 6351-6363.	1.7	78
110	Highly Conserved Salt Bridge Stabilizes Rigid Signal Patch at Extracellular Loop Critical for Surface Expression of Acid-sensing Ion Channels. Journal of Biological Chemistry, 2012, 287, 14443-14455.	1.6	17
111	Heteromeric Heat-sensitive Transient Receptor Potential Channels Exhibit Distinct Temperature and Chemical Response. Journal of Biological Chemistry, 2012, 287, 7279-7288.	1.6	63
112	Subunit-Specific Inhibition of Glycine Receptors by Curcumol. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 371-379.	1.3	11
113	TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes. Cell, 2012, 151, 372-383.	13.5	456
114	Depolarization potentials in mouse lateral septal nucleus neurons mediated by TRPC4â€like channels. FASEB Journal, 2012, 26, 1048.17.	0.2	0
115	Extracellular Spermine Exacerbates Ischemic Neuronal Injury through Sensitization of ASIC1a Channels to Extracellular Acidosis. Journal of Neuroscience, 2011, 31, 2101-2112.	1.7	141
116	TRPM8 acute desensitization is mediated by calmodulin and requires PIP ₂ : distinction from tachyphylaxis. Journal of Neurophysiology, 2011, 106, 3056-3066.	0.9	51
117	Ca2+: a versatile master key for intracellular signaling cascades. Science China Life Sciences, 2011, 54, 683-685.	2.3	5
118	Rapid and Efficient Generation of Functional Motor Neurons From Human Pluripotent Stem Cells Using Gene Delivered Transcription Factor Codes. Molecular Therapy, 2011, 19, 1905-1912.	3.7	168
119	Hysteresis of gating underlines sensitization of TRPV3 channels. Journal of General Physiology, 2011, 138, 509-520.	0.9	82
120	Identification of ML204, a Novel Potent Antagonist That Selectively Modulates Native TRPC4/C5 Ion Channels. Journal of Biological Chemistry, 2011, 286, 33436-33446.	1.6	171
121	Cyclic Adenosine Diphosphate Ribose Activates Ryanodine Receptors, whereas NAADP Activates Two-pore Domain Channels. Journal of Biological Chemistry, 2011, 286, 9136-9140.	1.6	78
122	Two-pore channels for integrative Ca ²⁺ signaling. Communicative and Integrative Biology, 2010, 3, 12-17.	0.6	34
123	Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Archiv European Journal of Physiology, 2010, 459, 579-592.	1.3	110
124	Purified TPC Isoforms Form NAADP Receptors with Distinct Roles for Ca2+ Signaling and Endolysosomal Trafficking. Current Biology, 2010, 20, 703-709.	1.8	234
125	TPCs: Endolysosomal channels for Ca ²⁺ mobilization from acidic organelles triggered by NAADP. FEBS Letters, 2010, 584, 1966-1974.	1.3	71
126	Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions. Journal of Cell Science, 2010, 123, 4170-4181.	1.2	47

#	Article	IF	CITATIONS
127	TPC2 Is a Novel NAADP-sensitive Ca2+ Release Channel, Operating as a Dual Sensor of Luminal pH and Ca2+. Journal of Biological Chemistry, 2010, 285, 35039-35046.	1.6	197
128	Negative Allosteric Modulators That Target Human α4β2 Neuronal Nicotinic Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 761-774.	1.3	29
129	Identification of Translational Activators of Glial Glutamate Transporter EAAT2 through Cell-Based High-Throughput Screening: An Approach to Prevent Excitotoxicity. Journal of Biomolecular Screening, 2010, 15, 653-662.	2.6	79
130	An emerging role for NAADP-mediated Ca ²⁺ signaling in the pancreatic β-cell. Islets, 2010, 2, 323-330.	0.9	29
131	Calcium signaling via two-pore channels: local or global, that is the question. American Journal of Physiology - Cell Physiology, 2010, 298, C430-C441.	2.1	117
132	The Roles of ATF3, an Adaptive-Response Gene, in High-Fat-Diet-Induced Diabetes and Pancreatic β-Cell Dysfunction. Molecular Endocrinology, 2010, 24, 1423-1433.	3.7	77
133	Luminal Ca2+ is a Major Sensitiser of Two-Pore Channels to NAADP. Biophysical Journal, 2010, 98, 682a-683a.	0.2	4
134	TRPC5 Is a Ca2+-activated Channel Functionally Coupled to Ca2+-selective Ion Channels. Journal of Biological Chemistry, 2009, 284, 34423-34432.	1.6	90
135	Effect of Novel Negative Allosteric Modulators of Neuronal Nicotinic Receptors on Cells Expressing Native and Recombinant Nicotinic Receptors: Implications for Drug Discovery. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 504-515.	1.3	19
136	NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature, 2009, 459, 596-600.	13.7	687
137	Zinc activates damage-sensing TRPA1 ion channels. Nature Chemical Biology, 2009, 5, 183-190.	3.9	204
138	Dopamine modulates an mGluR5-mediated depolarization underlying prefrontal persistent activity. Nature Neuroscience, 2009, 12, 190-199.	7.1	124
139	A role for Orai in TRPC-mediated Ca ²⁺ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca ²⁺ entry. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3202-3206.	3.3	204
140	Sensorimotor enhancement in mouse mutants lacking the Purkinje cell-specific Gi/o modulator, Pcp2(L7). Molecular and Cellular Neurosciences, 2009, 40, 62-75.	1.0	19
141	Deletion of TRPC4 and TRPC6 in Mice Impairs Smooth Muscle Contraction and Intestinal Motility In Vivo. Gastroenterology, 2009, 137, 1415-1424.	0.6	169
142	Two-pore Channels for Calcium Mobilization from Acidic Organelles and Cell Signaling by NAADP. Biophysical Journal, 2009, 96, 391a.	0.2	1
143	Potencies of Cocaine Methiodide on Major Cocaine Targets in Mice. PLoS ONE, 2009, 4, e7578.	1.1	11
144	The TRPV3 mutation associated with the hairless phenotype in rodents is constitutively active. Cell Calcium, 2008, 43, 334-343.	1.1	77

#	Article	IF	CITATIONS
145	Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2895-2900.	3.3	265
146	Calcium Plays a Central Role in the Sensitization of TRPV3 Channel to Repetitive Stimulations. Journal of Biological Chemistry, 2008, 283, 6162-6174.	1.6	90
147	Isoform-specific Inhibition of TRPC4 Channel by Phosphatidylinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 2008, 283, 10026-10036.	1.6	150
148	TRPC Channel Interactions with Calmodulin and IP3 Receptors. Novartis Foundation Symposium, 2008, , 44-62.	1.2	21
149	The Axon Dendrite Targeting of Kv3 (Shaw) Channels Is Determined by a Targeting Motif That Associates with the T1 Domain and Ankyrin G. Journal of Neuroscience, 2007, 27, 14158-14170.	1.7	53
150	β-Nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16359-16364.	3.3	158
151	Analogs of Methyllycaconitine as Novel Noncompetitive Inhibitors of Nicotinic Receptors: Pharmacological Characterization, Computational Modeling, and Pharmacophore Development. Molecular Pharmacology, 2007, 71, 1288-1297.	1.0	24
152	Understanding the role of voltage gating of polymodal TRP channels. Journal of Physiology, 2007, 585, 321-322.	1.3	13
153	Potentiation of TRPV3 channel function by unsaturated fatty acids. Journal of Cellular Physiology, 2006, 208, 201-212.	2.0	121
154	Thermal sensitivity of isolated vagal pulmonary sensory neurons: role of transient receptor potential vanilloid receptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R541-R550.	0.9	64
155	TRPC3 and TRPC4 Associate to Form a Redox-sensitive Cation Channel. Journal of Biological Chemistry, 2006, 281, 13588-13595.	1.6	198
156	Inhibition of TRPC5 channels by Ca2+-binding protein 1 in Xenopus oocytes. Pflugers Archiv European Journal of Physiology, 2005, 450, 345-354.	1.3	50
157	Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels. Pflugers Archiv European Journal of Physiology, 2005, 451, 105-115.	1.3	172
158	2-Aminoethoxydiphenyl borate stimulates pulmonary C neurons via the activation of TRPV channels. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L932-L941.	1.3	39
159	Regulation of the Ca2+ Sensitivity of the Nonselective Cation Channel TRPM4. Journal of Biological Chemistry, 2005, 280, 6423-6433.	1.6	252
160	The Selectivity Filter of the Cation Channel TRPM4. Journal of Biological Chemistry, 2005, 280, 22899-22906.	1.6	120
161	Activation of the Endothelial Store-Operated I SOC Ca 2+ Channel Requires Interaction of Protein 4.1 With TRPC4. Circulation Research, 2005, 97, 1164-1172.	2.0	98
162	Calmodulin and Calcium Interplay in the Modulation of TRPC5 Channel Activity. Journal of Biological Chemistry, 2005, 280, 30788-30796.	1.6	83

#	Article	IF	CITATIONS
163	An Alternative Splicing Product of the Murine trpv1 Gene Dominant Negatively Modulates the Activity of TRPV1 Channels. Journal of Biological Chemistry, 2004, 279, 37423-37430.	1.6	101
164	Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion. Journal of Cell Biology, 2004, 166, 537-548.	2.3	116
165	Ca2+ Signaling by TRPC3 Involves Na+ Entry and Local Coupling to the Na+/Ca2+ Exchanger. Journal of Biological Chemistry, 2004, 279, 13696-13704.	1.6	164
166	2-Aminoethoxydiphenyl Borate Is a Common Activator of TRPV1, TRPV2, and TRPV3. Journal of Biological Chemistry, 2004, 279, 35741-35748.	1.6	446
167	A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. Molecular Brain Research, 2004, 132, 73-86.	2.5	30
168	TRPC channel interactions with calmodulin and IP3 receptors. Novartis Foundation Symposium, 2004, 258, 44-58; discussion 58-62, 98-102, 263-6.	1.2	14
169	Epidermal Growth Factor-induced Depletion of the Intracellular Ca2+ Store Fails to Activate Capacitative Ca2+Entry in a Human Salivary Cell Line. Journal of Biological Chemistry, 2002, 277, 48165-48171.	1.6	14
170	Rapid Activation of Protein Tyrosine Kinase and Phospholipase C-γ2 and Increase in Cytosolic Free Calcium Are Required by Ehrlichia chaffeensis for Internalization and Growth in THP-1 Cells. Infection and Immunity, 2002, 70, 889-898.	1.0	57
171	Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood, 2002, 100, 2801-2811.	0.6	193
172	A Unified Nomenclature for the Superfamily of TRP Cation Channels. Molecular Cell, 2002, 9, 229-231.	4.5	620
173	Calmodulin Regulates Ca2+-Dependent Feedback Inhibition of Store-Operated Ca2+ Influx by Interaction with a Site in the C Terminus of TrpC1. Molecular Cell, 2002, 9, 739-750.	4.5	135
174	Expression of Trp3 Determines Sensitivity of Capacitative Ca2+ Entry to Nitric Oxide and Mitochondrial Ca2+ Handling. Journal of Biological Chemistry, 2001, 276, 48149-48158.	1.6	28
175	Increased inwardly rectifying potassium currents in HEK-293 cells expressing murine transient receptor potential 4. Biochemical Journal, 2001, 354, 717-725.	1.7	12
176	Identification of Common Binding Sites for Calmodulin and Inositol 1,4,5-Trisphosphate Receptors on the Carboxyl Termini of Trp Channels. Journal of Biological Chemistry, 2001, 276, 21303-21310.	1.6	269
177	Trp1â€dependent enhancement of salivary gland fluid secretion: role of storeâ€operated calcium entry. FASEB Journal, 2001, 15, 1652-1654.	0.2	67
178	Coassembly of Trp1 and Trp3 Proteins Generates Diacylglycerol- and Ca2+-sensitive Cation Channels. Journal of Biological Chemistry, 2000, 275, 27799-27805.	1.6	264
179	Trp1, a Candidate Protein for the Store-operated Ca2+Influx Mechanism in Salivary Gland Cells. Journal of Biological Chemistry, 2000, 275, 3403-3411.	1.6	255
180	Association of Mammalian Trp4 and Phospholipase C Isozymes with a PDZ Domain-containing Protein, NHERF. Journal of Biological Chemistry, 2000, 275, 37559-37564.	1.6	212

#	Article	IF	CITATIONS
181	Control of Pollen Tube Tip Growth by a Rop GTPase–Dependent Pathway That Leads to Tip-Localized Calcium Influx. Plant Cell, 1999, 11, 1731-1742.	3.1	447
182	The N-Terminal Domain of the IP3 Receptor Gates Store-Operated hTrp3 Channels. Molecular Cell, 1999, 4, 423-429.	4.5	259