Christian J R Cumagun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science, 2017, 357, 80-83.	6.0	260
2	Comparative genomics identifies the <i><scp>M</scp>agnaporthe oryzae</i> avirulence effector <i><scp>A</scp>vr<scp>P</scp>i9</i> that triggers <i><scp>P</scp>i9</i> â€mediated blast resistance in rice. New Phytologist, 2015, 206, 1463-1475.	3.5	169
3	Genetic Mapping of Pathogenicity and Aggressiveness of Gibberella zeae (Fusarium graminearum) Toward Wheat. Phytopathology, 2004, 94, 520-526.	1.1	93
4	Mycotoxigenic Fungi and Mycotoxins in Agricultural Crop Commodities in the Philippines: A Review. Foods, 2019, 8, 249.	1.9	41
5	Segregation for aggressiveness and deoxynivalenol production of a population of Gibberella zeae causing head blight of wheat. European Journal of Plant Pathology, 2004, 110, 789-799.	0.8	33
6	Molecular Quantification and Genetic Diversity of Toxigenic Fusarium Species in Northern Europe as Compared to Those in Southern Europe. Microorganisms, 2013, 1, 162-174.	1.6	31
7	Phylogenetic analysis, fumonisin production and pathogenicity of Fusarium fujikuroi strains isolated from rice in the Philippines. Journal of the Science of Food and Agriculture, 2013, 93, 3032-3039.	1.7	29
8	Genetic characteristics of Fusarium verticillioides from corn in the Philippines. Journal of General Plant Pathology, 2009, 75, 405-412.	0.6	17
9	Non-Synergistic Effect of Trichoderma harzianum and Glomus spp. in Reducing Infection of Fusarium Wilt in Banana. Pathogens, 2019, 8, 43.	1.2	17
10	Evaluation and spatial downscaling of CRU TS precipitation data in the Philippines. Modeling Earth Systems and Environment, 2018, 4, 891-898.	1.9	16
11	Weed-Associated Fungal Endophytes as Biocontrol Agents of Fusarium oxysporum f. sp. cubense TR4 in Cavendish Banana. Journal of Fungi (Basel, Switzerland), 2021, 7, 224.	1.5	14
12	Female fertility and mating type distribution in a Philippine population ofFusarium verticillioides. Journal of Applied Genetics, 2008, 49, 123-126.	1.0	13
13	Assessment of mycotoxin risk on corn in the Philippines under current and future climate change conditions. Reviews on Environmental Health, 2015, 30, 135-42.	1.1	11
14	Genetic Diversity of Fusarium oxysporum f. sp. cubense Causing Panama Wilt of Banana in the Philippines. Pathogens, 2020, 9, 32.	1.2	11
15	Banana suitability and Fusarium wilt distribution in the Philippines under climate change. Spatial Information Research, 2019, 27, 339-349.	1.3	10
16	Phenotypic and Molecular Analyses of Rhizoctonia spp. Associated with Rice and Other Hosts. Microorganisms, 2019, 7, 88.	1.6	10
17	Cellulose decomposing ability ofTrichodermain relation to their saprophytic survival. Archives of Phytopathology and Plant Protection, 2009, 42, 698-704.	0.6	9
18	Geographic Distribution of Avirulence Genes of the Rice Blast Fungus Magnaporthe oryzae in the Philippines. Microorganisms, 2019, 7, 23.	1.6	9

#	Article	IF	CITATIONS
19	Genetic structure of Magnaporthe oryzae populations in three island groups in the Philippines. European Journal of Plant Pathology, 2019, 153, 101-118.	0.8	6
20	Phylogenetic analyses and crossâ€infection studies of <i>Phytophthora</i> species infecting cacao and durian in Southâ€Central Mindanao, Philippines. Journal of Phytopathology, 2022, 170, 41-56.	0.5	6
21	Screening for Resistance in Selected Tomato Varieties against the Root-Knot Nematode Meloidogyne incognita in the Philippines Using a Molecular Marker and Biochemical Analysis. Plants, 2022, 11, 1354.	1.6	6
22	The weed <i>Eleusine indica</i> as an alternative host of <i>Fusarium oxysporum</i> f.sp. <i>cubense</i> tropical race 4 causing Fusarium wilt in Cavendish banana. Journal of Phytopathology, 2022, 170, 437-444.	0.5	5
23	1 Climate change and plant diseases caused by mycotoxigenic fungi: implications for food security. , 2015, , 1-28.		4
24	Rainforest fungal endophytes for the bio-enhancement of banana toward <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> Tropical Race 4. Archives of Phytopathology and Plant Protection, 2019, 52, 776-794.	0.6	4
25	First record ofPassalora bougainvilleaecausing leaf spot of bougainvillea in the Philippines. Australasian Plant Disease Notes, 2008, 3, 3.	0.4	3
26	Exploring spatial patterns of trends in monthly rainfall and temperature in the Philippines based on Climate Research Unit grid. Spatial Information Research, 2018, 26, 471-481.	1.3	3
27	Athelia rolfsii (= Sclerotium rolfsii) infects banana in the Philippines. Australasian Plant Disease Notes, 2019, 14, 1.	0.4	3
28	Encapsulation of wild oregano, <scp><i>Plectranthus amboinicus</i></scp> (<scp>Lour.</scp>) <scp>Spreng</scp> , phenolic extract in baker's yeast for the postharvest control of anthracnose in papaya. Journal of the Science of Food and Agriculture, 2022, 102, 4657-4667.	1.7	3
29	First record ofAsperisporium caricaecausing black spot of papaya in the Philippines. Australasian Plant Disease Notes, 2007, 2, 89.	0.4	2
30	Plant-parasitic nematodes associated with organic and conventional vegetable farms in Laguna Province, Philippines. Archives of Phytopathology and Plant Protection, 2017, 50, 776-788.	0.6	2
31	Observations on the Potential of an Endophytic Fungus Associated with Cacao Leaves against Phytophthora palmivora. Microbiology Research, 2021, 12, 528-538.	0.8	2
32	Diversity of ACE1 Genotypes of the Rice Blast Fungus (Magnaporthe oryzae B.C. Couch) in the Philippines. IAMURE International Journal of Ecology and Conservation, 2016, 16, .	0.0	1
33	Diversity of Xanthomonas oryzae pv. Oryzae on susceptible and resistant rice lines in bacterial blight hot spot areas of the Philippines. European Journal of Plant Pathology, 0, , .	0.8	1
34	First report of Pythium cucurbitacearum causing fruit rot of durian in the Philippines. Journal of Plant Pathology, 2021, 103, 1085-1085.	0.6	0
35	Host-Parasite Interaction During Development of Major Seed-Borne Fungal Diseases. , 2020, , 233-244.		Ο