
Zhengnan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5113119/publications.pdf Version: 2024-02-01

ZHENCNAN ZHANC

#	Article	IF	CITATIONS
1	Estimation of volume resources for planted forests using an advanced LiDAR and hyperspectral remote sensing. Resources, Conservation and Recycling, 2022, 185, 106485.	10.8	10
2	Deep Learning in Forest Structural Parameter Estimation Using Airborne LiDAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1603-1618.	4.9	15
3	Assessment of approaches for monitoring forest structure dynamics using bi-temporal digital aerial photogrammetry point clouds. Remote Sensing of Environment, 2021, 255, 112300.	11.0	17
4	Assessing the 3-D Structure of Bamboo Forests Using an Advanced Pseudo-Vertical Waveform Approach Based on Airborne Full-Waveform LiDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 2021, , 1-24.	6.3	0
5	Individual Tree Structural Parameter Extraction and Volume Table Creation Based on Near-Field LiDAR Data: A Case Study in a Subtropical Planted Forest. Sensors, 2021, 21, 8162.	3.8	12
6	Tree species classification using UAS-based digital aerial photogrammetry point clouds and multispectral imageries in subtropical natural forests. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102173.	2.8	32
7	Prediction of Diameter Distributions with Multimodal Models Using LiDAR Data in Subtropical Planted Forests. Forests, 2019, 10, 125.	2.1	15
8	Comparison of UAV LiDAR and Digital Aerial Photogrammetry Point Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests. Forests, 2019, 10, 145.	2.1	95
9	Estimating Tree Volume Distributions in Subtropical Forests Using Airborne LiDAR Data. Remote Sensing, 2019, 11, 97.	4.0	17
10	Assessment of different approaches for estimating volume change in secondary forests using bi-temporal LiDAR data. , 2018, , .		2
11	The assessment of synergetic effects of airborne LiDAR, CCD and hyperspectral data for above-ground biomass estimation. , 2018, , .		1
12	Predicting LiDAR-derived biomass distributions by Weibull models in a subtropical forest. , 2018, , .		2
13	Estimating Forest Structural Parameters Using Canopy Metrics Derived from Airborne LiDAR Data in Subtropical Forests. Remote Sensing, 2017, 9, 940.	4.0	65