
MaÅ,gorzata Wilk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/511309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermogravimetric study of biomass, sewage sludge and coal combustion. Energy Conversion and Management, 2013, 75, 425-430.	4.4	161
2	Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study. Biomass and Bioenergy, 2019, 120, 166-175.	2.9	152
3	Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus. Energy, 2017, 140, 1292-1304.	4.5	126
4	Thermal characteristics of the combustion process of biomass and sewage sludge. Journal of Thermal Analysis and Calorimetry, 2013, 114, 519-529.	2.0	98
5	Characterisation of renewable fuels' torrefaction process with different instrumental techniques. Energy, 2015, 87, 259-269.	4.5	96
6	Mineral phase transformation of biomass ashes – Experimental and thermochemical calculations. Renewable Energy, 2018, 128, 446-459.	4.3	88
7	Properties of ash generated during sewage sludge combustion: A multifaceted analysis. Energy, 2016, 113, 85-94.	4.5	76
8	Pyrolysis of hydrochar derived from biomass – Experimental investigation. Fuel, 2020, 267, 117246.	3.4	74
9	Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review. Renewable and Sustainable Energy Reviews, 2022, 154, 111873.	8.2	63
10	Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia. Energy, 2020, 202, 117717.	4.5	62
11	Combustion and kinetic parameters estimation of torrefied pine, acacia and Miscanthus giganteus using experimental and modelling techniques. Bioresource Technology, 2017, 243, 304-314.	4.8	60
12	Effects of Nordic Walking training on exercise capacity and fitness in men participating in early, short-term inpatient cardiac rehabilitation after an acute coronary syndrome — a controlled trial. Clinical Rehabilitation, 2009, 23, 995-1004.	1.0	59
13	Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar. Renewable Energy, 2021, 178, 1046-1056.	4.3	52
14	A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow. Renewable Energy, 2020, 156, 942-950.	4.3	50
15	Combustion process of torrefied wood biomass. Journal of Thermal Analysis and Calorimetry, 2017, 127, 1339-1349.	2.0	48
16	Carbonisation of wood residue into charcoal during low temperature process. Renewable Energy, 2016, 85, 507-513.	4.3	44
17	Evaluation of the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace. Fuel, 2018, 212, 95-100.	3.4	44
18	The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp. Renewable Energy, 2021, 177, 216-228.	4.3	42

MaÅ,gorzata Wilk

#	Article	IF	CITATIONS
19	Modelling of pollutants concentrations from the biomass combustion process. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2011, 32, 423-433.	0.7	20
20	Investigation of sewage sludge preparation for combustion process. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2011, 32, .	0.7	15
21	A novel method of sewage sludge pre-treatment - HTC. E3S Web of Conferences, 2016, 10, 00103.	0.2	15
22	Modification of a micellar system for amino acid separation by MEKC—Application for amino acid profiling in formulations for parenteral use. Talanta, 2010, 83, 513-520.	2.9	9
23	Syngas as a Reburning Fuel for Natural Gas Combustion. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2014, 35, 181-190.	0.7	9
24	Capillary electrophoresis with indirect UV detection for the determination of stabilizers and citrates present in human albumin solutions. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 90-95.	1.4	7
25	The Utilisation of Solid Fuels Derived from Waste Pistachio Shells in Direct Carbon Solid Oxide Fuel Cells. Materials, 2021, 14, 6755.	1.3	6
26	The Chemical-Looping Combustion of Propane with Iron (III) Oxide as an Oxygen Carrier. Combustion Science and Technology, 2016, 188, 953-967.	1.2	1
27	REHABILITACJA The importance and effectiveness of walking training in cardiac rehabilitation with special regard to patients after cardiac surgery. Kardiochirurgia I Torakochirurgia Polska, 2012, 4, 481-485.	0.1	0