List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5112915/publications.pdf Version: 2024-02-01

T

#	Article	IF	CITATIONS
1	Country‧pecific Environmental Risks of Fragrance Encapsulates Used in Laundry Care Products. Environmental Toxicology and Chemistry, 2022, 41, 905-916.	4.3	7
2	Probabilistic material flow analysis and emissions modeling for five commodity plastics (PUR, ABS, PA,) Tj ETQq0 106071.	0 0 rgBT / 10.8	Overlock 10 14
3	Combined in vitro-in vivo dosimetry enables the extrapolation of in vitro doses to human exposure levels: A proof of concept based on a meta-analysis of in vitro and in vivo titanium dioxide toxicity data. NanoImpact, 2022, 25, 100376.	4.5	6
4	Accumulation and decontamination kinetics of PCBs and PCDD/Fs from grass silage and soil in a transgenerational cow-calf setting. Chemosphere, 2022, 296, 133951.	8.2	14
5	Metaâ€analysis of Bioaccumulation Data for Nondissolvable Engineered Nanomaterials in Freshwater Aquatic Organisms. Environmental Toxicology and Chemistry, 2022, 41, 1202-1214.	4.3	10
6	Tire wear particle emissions: Measurement data where are you?. Science of the Total Environment, 2022, 830, 154655.	8.0	18
7	<i>In vitro</i> -based human toxicity effect factors: challenges and opportunities for nanomaterial impact assessment. Environmental Science: Nano, 2022, 9, 1913-1925.	4.3	5
8	Systematic study of the presence of microplastic fibers during polyester yarn production. Journal of Cleaner Production, 2022, 363, 132247.	9.3	26
9	Evaluation of fiber and debris release from protective COVID-19 mask textiles and in vitro acute cytotoxicity effects. Environment International, 2022, 167, 107364.	10.0	4
10	Reply to Comment on "Characterization of Nanoplastics, Fibrils, and Microplastics Released during Washing and Abrasion of Polyester Textiles― Environmental Science & Technology, 2022, 56, 10545-10546.	10.0	2
11	Transgenerational mass balance and tissue distribution of PCBs and PCDD/Fs from grass silage and soil into cow-calf continuum. Chemosphere, 2022, 307, 135745.	8.2	6
12	Probabilistic environmental risk assessment of microplastics in marine habitats. Aquatic Toxicology, 2021, 230, 105689.	4.0	40
13	Probabilistic modelling of nanobiomaterial release from medical applications into the environment. Environment International, 2021, 146, 106184.	10.0	14
14	Material flow analysis of plastic in organic waste in Switzerland. Soil Use and Management, 2021, 37, 277-288.	4.9	18
15	Size-Specific, Dynamic, Probabilistic Material Flow Analysis of Titanium Dioxide Releases into the Environment. Environmental Science & amp; Technology, 2021, 55, 2392-2402.	10.0	31
16	Placing nanoplastics in the context of global plastic pollution. Nature Nanotechnology, 2021, 16, 491-500.	31.5	252
17	Integrated dynamic probabilistic material flow analysis of engineered materials in all European countries. NanoImpact, 2021, 22, 100312.	4.5	15
18	Average transfer factors are not enough: The influence of growing cattle physiology on the transfer rate of polychlorinated biphenyls from feed to adipose. Chemosphere, 2021, 270, 129698.	8.2	4

#	Article	IF	CITATIONS
19	Representation, Propagation, and Interpretation of Uncertain Knowledge in Dynamic Probabilistic Material Flow Models. Environmental Modeling and Assessment, 2021, 26, 709-721.	2.2	0
20	Formation of Fiber Fragments during Abrasion of Polyester Textiles. Environmental Science & Technology, 2021, 55, 8001-8009.	10.0	55
21	Formâ€ S pecific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nanoâ€Ag,) Tj E Chemistry, 2021, 40, 2629-2639.	TQq1 1 0. 4.3	784314 rg 18
22	Modelling local nanobiomaterial release and concentration hotspots in the environment. Environmental Pollution, 2021, 284, 117399.	7.5	0
23	How Relevant Are Direct Emissions of Microplastics into Freshwater from an LCA Perspective?. Sustainability, 2021, 13, 9922.	3.2	10
24	Polymer-specific dynamic probabilistic material flow analysis of seven polymers in Europe from 1950 to 2016. Resources, Conservation and Recycling, 2021, 173, 105733.	10.8	20
25	Characterization of Nanoplastics, Fibrils, and Microplastics Released during Washing and Abrasion of Polyester Textiles. Environmental Science & Technology, 2021, 55, 15873-15881.	10.0	63
26	Systematic Consideration of Parameter Uncertainty and Variability in Probabilistic Species Sensitivity Distributions. Integrated Environmental Assessment and Management, 2020, 16, 211-222.	2.9	19
27	Dynamic probabilistic material flow analysis of rubber release from tires into the environment. Environmental Pollution, 2020, 258, 113573.	7.5	83
28	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	4.3	32
29	Exposure and Possible Risks of Engineered Nanomaterials in the Environment—Current Knowledge and Directions for the Future. Reviews of Geophysics, 2020, 58, e2020RG000710.	23.0	44
30	A Metaâ€analysis of Ecotoxicological Hazard Data for Nanoplastics in Marine and Freshwater Systems. Environmental Toxicology and Chemistry, 2020, 39, 2588-2598.	4.3	42
31	A proxy-based approach to predict spatially resolved emissions of macro- and microplastic to the environment. Science of the Total Environment, 2020, 748, 141137.	8.0	31
32	Inventory of country-specific emissions of engineered nanomaterials throughout the life cycle. Environmental Science: Nano, 2020, 7, 3824-3839.	4.3	11
33	Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products. Materials, 2020, 13, 4532.	2.9	26
34	Human hazard potential of nanocellulose: quantitative insights from the literature. Nanotoxicology, 2020, 14, 1241-1257.	3.0	41
35	Cotton and Surgical Masks—What Ecological Factors Are Relevant for Their Sustainability?. Sustainability, 2020, 12, 10245.	3.2	32
36	Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials – A case study for silver and titanium dioxide representative materials. Aquatic Toxicology, 2020, 225, 105543.	4.0	13

#	Article	IF	CITATIONS
37	Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems. Waste Management, 2020, 113, 118-131.	7.4	25
38	Relative potency factor approach enables the use of <i>inÂvitro</i> information for estimation of human effect factors for nanoparticle toxicity in life-cycle impact assessment. Nanotoxicology, 2020, 14, 275-286.	3.0	13
39	An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. Environment International, 2020, 137, 105505.	10.0	43
40	Systematic Study of Microplastic Fiber Release from 12 Different Polyester Textiles during Washing. Environmental Science & Technology, 2020, 54, 4847-4855.	10.0	127
41	The origin of microplastic fiber in polyester textiles: The textile production process matters. Journal of Cleaner Production, 2020, 267, 121970.	9.3	61
42	Prospective environmental risk assessment of nanocellulose for Europe. Environmental Science: Nano, 2019, 6, 2520-2531.	4.3	21
43	Polymer-Specific Modeling of the Environmental Emissions of Seven Commodity Plastics As Macro- and Microplastics. Environmental Science & Technology, 2019, 53, 9664-9676.	10.0	160
44	Identifying ecotoxicological descriptors to enable predictive hazard assessments of nano-TiO2 from a meta-analysis of ecotoxicological data. NanoImpact, 2019, 15, 100180.	4.5	2
45	Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environmental Science: Nano, 2019, 6, 505-518.	4.3	24
46	Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery. Journal of Nanobiotechnology, 2019, 17, 56.	9.1	27
47	Material-specific properties applied to an environmental risk assessment of engineered nanomaterials – implications on grouping and read-across concepts. Nanotoxicology, 2019, 13, 623-643.	3.0	22
48	Meta-Analysis of Pharmacokinetic Studies of Nanobiomaterials for the Prediction of Excretion Depending on Particle Characteristics. Frontiers in Bioengineering and Biotechnology, 2019, 7, 405.	4.1	7
49	Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters. Environmental Toxicology and Chemistry, 2019, 38, 436-447.	4.3	126
50	Redefining environmental nanomaterial flows: consequences of the regulatory nanomaterial definition on the results of environmental exposure models. Environmental Science: Nano, 2018, 5, 1372-1385.	4.3	31
51	Life cycle assessment of manufactured nanomaterials: Where are we?. NanoImpact, 2018, 10, 108-120.	4.5	129
52	Environmental risk assessment of engineered nanoâ€5iO ₂ , nano iron oxides, nanoâ€CeO ₂ , nanoâ€Al ₂ O ₃ , and quantum dots. Environmental Toxicology and Chemistry, 2018, 37, 1387-1395.	4.3	49
53	Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions. Environmental Pollution, 2018, 235, 589-601.	7.5	77
54	Procedures for the production and use of synthetically aged and product released nanomaterials for further environmental and ecotoxicity testing. NanoImpact, 2018, 10, 70-80.	4.5	26

#	Article	IF	CITATIONS
55	Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Environmental Pollution, 2018, 243, 17-27.	7.5	56
56	Probabilistic Material Flow Analysis of Seven Commodity Plastics in Europe. Environmental Science & Technology, 2018, 52, 9874-9888.	10.0	135
57	Prospective nanomaterial mass flows to the environment by life cycle stage from five applications containing CuO, DPP, FeO , CNT and SiO2. Journal of Cleaner Production, 2018, 203, 990-1002.	9.3	16
58	The need for a life-cycle based aging paradigm for nanomaterials: importance of real-world test systems to identify realistic particle transformations. Nanotechnology, 2017, 28, 072001.	2.6	49
59	Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials. Environmental Science & Technology, 2017, 51, 2854-2863.	10.0	114
60	Agglomeration potential of TiO2 in synthetic leachates made from the fly ash of different incinerated wastes. Environmental Pollution, 2017, 223, 616-623.	7.5	9
61	Digging below the surface: the hidden quality of the OECD nanosilver dossier. Environmental Science: Nano, 2017, 4, 1209-1215.	4.3	3
62	Improvements in Nanoparticle Tracking Analysis To Measure Particle Aggregation and Mass Distribution: A Case Study on Engineered Nanomaterial Stability in Incineration Landfill Leachates. Environmental Science & Technology, 2017, 51, 5611-5621.	10.0	33
63	Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing. Environmental Science & Technology, 2017, 51, 7036-7046.	10.0	481
64	Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media. Journal of Nanobiotechnology, 2017, 15, 5.	9.1	48
65	Mobility of metallic (nano)particles in leachates from landfills containing waste incineration residues. Environmental Science: Nano, 2017, 4, 480-492.	4.3	35
66	European country-specific probabilistic assessment of nanomaterial flows towards landfilling, incineration and recycling. Environmental Science: Nano, 2017, 4, 1961-1973.	4.3	35
67	Nanomaterials to microplastics: Swings and roundabouts. Nano Today, 2017, 17, 7-10.	11.9	21
68	Evaluation of environmental exposure models for engineered nanomaterials in a regulatory context. NanoImpact, 2017, 8, 38-47.	4.5	85
69	Environmental Risk Assessment Strategy for Nanomaterials. International Journal of Environmental Research and Public Health, 2017, 14, 1251.	2.6	33
70	Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Environmental Science & Technology, 2016, 50, 4701-4711.	10.0	432
71	Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat. Environmental Science & Technology, 2016, 50, 5927-5934.	10.0	66
72	Unraveling the Complexity in the Aging of Nanoenhanced Textiles: A Comprehensive Sequential Study on the Effects of Sunlight and Washing on Silver Nanoparticles. Environmental Science & Technology, 2016, 50, 5790-5799.	10.0	47

#	Article	IF	CITATIONS
73	Human health characterization factors of nano-TiO2 for indoor and outdoor environments. International Journal of Life Cycle Assessment, 2016, 21, 1452-1462.	4.7	32
74	Frameworks and tools for risk assessment of manufactured nanomaterials. Environment International, 2016, 95, 36-53.	10.0	97
75	Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling. Nanotoxicology, 2016, 10, 1545-1554.	3.0	27
76	A dynamic probabilistic material flow modeling method. Environmental Modelling and Software, 2016, 76, 69-80.	4.5	54
77	A critical review of engineered nanomaterial release data: Are current data useful for material flow modeling?. Environmental Pollution, 2016, 213, 502-517.	7.5	92
78	Durability of nano-enhanced textiles through the life cycle: releases from landfilling after washing. Environmental Science: Nano, 2016, 3, 375-387.	4.3	35
79	Meeting the Needs for Released Nanomaterials Required for Further Testing—The SUN Approach. Environmental Science & Technology, 2016, 50, 2747-2753.	10.0	55
80	LICARA nanoSCAN - A tool for the self-assessment of benefits and risks of nanoproducts. Environment International, 2016, 91, 150-160.	10.0	53
81	Probabilistic modeling of the flows and environmental risks of nano-silica. Science of the Total Environment, 2016, 545-546, 67-76.	8.0	77
82	Probabilistic environmental risk assessment of five nanomaterials (nano-TiO ₂ , nano-Ag,) Tj ETQq0 () 0 rgBT /C	Verlock 10 Tf
83	Scientific Basis for Regulatory Decision-Making of Nanomaterials Report on the Workshop, 20–21 January 2014, Center of Applied Ecotoxicology, Dübendorf. Chimia, 2015, 69, 52.	0.6	4
84	Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. Journal of Nanobiotechnology, 2015, 13, 93.	9.1	54
85	Modeling Flows and Concentrations of Nine Engineered Nanomaterials in the Danish Environment. International Journal of Environmental Research and Public Health, 2015, 12, 5581-5602.	2.6	200
86	Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach. Environmental Science: Nano, 2015, 2, 340-351.	4.3	73
87	Flows of engineered nanomaterials through the recycling process in Switzerland. Waste Management, 2015, 36, 33-43.	7.4	78
88	Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO ₂ -nanoparticles by three crop plants. Metallomics, 2015, 7, 466-477.	2.4	120
89	Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. Waste Management, 2015, 43, 398-406.	7.4	44
90	Bacteria-mediated reduction of As(V)-doped lepidocrocite in a flooded soil sample. Chemical Geology, 2015, 406, 34-44.	3.3	17

#	Article	IF	CITATIONS
91	Measuring Nanomaterial Release from Carbon Nanotube Composites: Review of the State of the Science. Journal of Physics: Conference Series, 2015, 617, 012026.	0.4	50
92	Nanoparticles in facade coatings: a survey of industrial experts on functional and environmental benefits and challenges. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	18
93	Life cycle assessment of façade coating systems containing manufactured nanomaterials. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	66
94	Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environment International, 2015, 77, 132-147.	10.0	342
95	Effect of Variations of Washing Solution Chemistry on Nanomaterial Physicochemical Changes in the Laundry Cycle. Environmental Science & Technology, 2015, 49, 9665-9673.	10.0	38
96	Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. Environmental Science: Nano, 2015, 2, 421-428.	4.3	110
97	The Flows of Engineered Nanomaterials from Production, Use, and Disposal to the Environment. Handbook of Environmental Chemistry, 2015, , 209-231.	0.4	6
98	Characterization of materials released into water from paint containing nano-SiO2. Chemosphere, 2015, 119, 1314-1321.	8.2	74
99	Are nanosized or dissolved metals more toxic in the environment? A metaâ€analysis. Environmental Toxicology and Chemistry, 2014, 33, 2733-2739.	4.3	121
100	Dissolution and transformation of cerium oxide nanoparticles in plant growth media. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	73
101	Investigation of small-scale processes in the rhizosphere of Lupinus albus using micro push-pull tests. Plant and Soil, 2014, 378, 309-324.	3.7	4
102	How to consider engineered nanomaterials in major accident regulations?. Environmental Sciences Europe, 2014, 26, .	5.5	32
103	Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environmental Pollution, 2014, 185, 69-76.	7.5	660
104	Sorption kinetics and equilibrium of the herbicide diuron to carbon nanotubes or soot in absence and presence of algae. Environmental Pollution, 2014, 192, 147-153.	7.5	18
105	Physical and Chemical Characterization of Fly Ashes from Swiss Waste Incineration Plants and Determination of the Ash Fraction in the Nanometer Range. Environmental Science & Technology, 2014, 48, 4765-4773.	10.0	33
106	Behavior of TiO ₂ Released from Nano-TiO ₂ -Containing Paint and Comparison to Pristine Nano-TiO ₂ . Environmental Science & Technology, 2014, 48, 6710-6718.	10.0	82
107	Presence of Nanoparticles in Wash Water from Conventional Silver and Nano-silver Textiles. ACS Nano, 2014, 8, 7208-7219.	14.6	231
108	Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere, 2014, 111, 352-358.	8.2	100

#	Article	IF	CITATIONS
109	Risk Assessment of Engineered Nanomaterials. , 2014, , 459-478.		3
110	Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. Nanotoxicology, 2013, 7, 1152-1156.	3.0	44
111	Migration of Ag- and TiO ₂ -(Nano)particles from Textiles into Artificial Sweat under Physical Stress: Experiments and Exposure Modeling. Environmental Science & Technology, 2013, 47, 9979-9987.	10.0	137
112	Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environmental Sciences: Processes and Impacts, 2013, 15, 2186.	3.5	103
113	Potential release scenarios for carbon nanotubes used in composites. Environment International, 2013, 59, 1-11.	10.0	211
114	Modeling the flows of engineered nanomaterials during waste handling. Environmental Sciences: Processes and Impacts, 2013, 15, 251-259.	3.5	73
115	Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution, 2013, 181, 287-300.	7.5	960
116	Comparative evaluation of antimicrobials for textile applications. Environment International, 2013, 53, 62-73.	10.0	264
117	Diuron Sorbed to Carbon Nanotubes Exhibits Enhanced Toxicity to Chlorella vulgaris. Environmental Science & Technology, 2013, 47, 7012-7019.	10.0	106
118	Toward the Development of Decision Supporting Tools That Can Be Used for Safe Production and Use of Nanomaterials. Accounts of Chemical Research, 2013, 46, 863-872.	15.6	54
119	Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere, 2013, 91, 512-520.	8.2	155
120	A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk. Integrated Environmental Assessment and Management, 2013, 9, 79-86.	2.9	51
121	Organic matter control on the reactivity of Fe(III)-oxyhydroxides and associated As in wetland soils: A kinetic modeling study. Chemical Geology, 2013, 335, 24-35.	3.3	46
122	Engineered nanomaterials in water and soils: A risk quantification based on probabilistic exposure and effect modeling. Environmental Toxicology and Chemistry, 2013, 32, 1278-1287.	4.3	156
123	Colloidal stability of suspended and agglomerate structures ofÂsettled carbon nanotubes in different aqueous matrices. Water Research, 2013, 47, 3910-3920.	11.3	37
124	Searching for Global Descriptors of Engineered Nanomaterial Fate and Transport in the Environment. Accounts of Chemical Research, 2013, 46, 844-853.	15.6	93
125	Micro Push–Pull Tests for Investigation of Small‣cale Processes in Unsaturated Porous Media. Vadose Zone Journal, 2013, 12, 1-11.	2.2	1
126	Evidence for effects of manufactured nanomaterials on crops is inconclusive. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, F3336-F3336	7.1	16

#	Article	IF	CITATIONS
127	Chapter 12. Modeling the Environmental Release and Exposure of Engineered Nanomaterials. RSC Nanoscience and Nanotechnology, 2012, , 284-313.	0.2	3
128	Limitations and information needs for engineered nanomaterial-specific exposure estimation and scenarios: recommendations for improved reporting practices. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	35
129	Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	1,018
130	Characterization of silver release from commercially available functional (nano)textiles. Chemosphere, 2012, 89, 817-824.	8.2	225
131	Release of Titanium Dioxide from Textiles during Washing. Environmental Science & Technology, 2012, 46, 8181-8188.	10.0	201
132	Critical aspects of sample handling for direct nanoparticle analysis and analytical challenges using asymmetric field flow fractionation in a multi-detector approach. Journal of Analytical Atomic Spectrometry, 2012, 27, 1120.	3.0	92
133	Long-term colloidal stability of 10 carbon nanotube types in the absence/presence of humic acid and calcium. Environmental Pollution, 2012, 169, 64-73.	7.5	42
134	Nanofiltration and nanostructured membranes—Should they be considered nanotechnology or not?. Journal of Hazardous Materials, 2012, 211-212, 275-280.	12.4	47
135	Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environmental Toxicology and Chemistry, 2012, 31, 50-59.	4.3	498
136	Paradigms to assess the environmental impact of manufactured nanomaterials. Environmental Toxicology and Chemistry, 2012, 31, 3-14.	4.3	294
137	Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 2012, 19, 550-558.	5.3	417
138	Development and Evaluation of Micro Push–Pull Tests to Investigate Micro-Scale Processes in Porous Media. Environmental Science & Technology, 2011, 45, 6460-6467.	10.0	7
139	120 Years of Nanosilver History: Implications for Policy Makers. Environmental Science & Technology, 2011, 45, 1177-1183.	10.0	685
140	Are Carbon Nanotube Effects on Green Algae Caused by Shading and Agglomeration?. Environmental Science & Technology, 2011, 45, 6136-6144.	10.0	273
141	Reply to Comments on â€120 Years of Nanosilver History: Implications for Policy Makersâ€. Environmental Science & Technology, 2011, 45, 7593-7595.	10.0	22
142	The release of engineered nanomaterials to the environment. Journal of Environmental Monitoring, 2011, 13, 1145.	2.1	655
143	Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environment International, 2011, 37, 1131-1142.	10.0	209
144	Influence of the initial state of carbon nanotubes on their colloidal stability under natural conditions. Environmental Pollution, 2011, 159, 1641-1648.	7.5	48

#	Article	IF	CITATIONS
145	Engineered nanomaterials in rivers – Exposure scenarios for Switzerland at high spatial and temporal resolution. Environmental Pollution, 2011, 159, 3439-3445.	7.5	150
146	Suitability of using diffusive gradients in thin films (DGT) to study metal bioavailability in mine tailings: possibilities and constraints. Environmental Science and Pollution Research, 2010, 17, 657-664.	5.3	21
147	Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation. Science of the Total Environment, 2010, 408, 1745-1754.	8.0	339
148	Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. Environmental Pollution, 2010, 158, 1955-1962.	7.5	39
149	Metal fractionation in a contaminated soil after reforestation: Temporal changes versus spatial variability. Environmental Pollution, 2010, 158, 3272-3278.	7.5	39
150	Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environmental Toxicology and Chemistry, 2010, 29, 1036-1048.	4.3	177
151	The importance of life cycle concepts for the development of safe nanoproducts. Toxicology, 2010, 269, 160-169.	4.2	221
152	Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles. Environmental Modelling and Software, 2010, 25, 320-332.	4.5	234
153	Nanosilver Revisited Downstream. Science, 2010, 330, 1054-1055.	12.6	121
154	Nanoparticles for Remediation: Solving Big Problems with Little Particles. Elements, 2010, 6, 395-400.	0.5	178
155	Is anything out there?. Nano Today, 2009, 4, 11-12.	11.9	33
156	Sampling, defining, characterising and modeling the rhizosphere—the soil science tool box. Plant and Soil, 2009, 321, 457-482.	3.7	101
157	Accumulation and solubility of metals during leaf litter decomposition in nonâ€polluted and polluted soil. European Journal of Soil Science, 2009, 60, 613-621.	3.9	56
158	Modeled Environmental Concentrations of Engineered Nanomaterials (TiO ₂ , ZnO, Ag, CNT,) Tj ETQ	q0 0.0 rgB	T /Overlock 1 2,132
159	Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environmental Pollution, 2009, 157, 1110-1116.	7.5	106
160	Cu and Zn mobilization in soil columns percolated by different irrigation solutions. Environmental Pollution, 2009, 157, 823-833.	7.5	26
161	The behavior and effects of nanoparticles in the environment. Environmental Pollution, 2009, 157, 1063-1064.	7.5	83
162	Environmental impact of As(V)–Fe oxyhydroxide reductive dissolution: An experimental insight. Chemical Geology, 2009, 259, 290-303.	3.3	27

#	Article	IF	CITATIONS
163	The Behavior of Silver Nanotextiles during Washing. Environmental Science & Technology, 2009, 43, 8113-8118.	10.0	553
164	Environmental Behavior and Effects of Engineered Metal and Metal Oxide Nanoparticles. Advances in Industrial and Hazardous Wastes Treatment Series, 2009, , .	0.0	0
165	Initial Changes in Refilled Lysimeters Built with Metal Polluted Topsoil and Acidic or Calcareous Subsoils as Indicated by Changes in Drainage Water Composition. Water, Air and Soil Pollution, 2008, 8, 163-176.	0.8	15
166	Fractionation of dissolved organic carbon from soil solution with immobilized metal ion affinity chromatography. European Journal of Soil Science, 2008, 59, 198-207.	3.9	9
167	Mining landscape: A cultural tourist opportunity or an environmental problem?. Ecological Economics, 2008, 64, 690-700.	5.7	87
168	Uptake of Zn and Fe by Wheat (<i>Triticum aestivum</i> var. Greina) and Transfer to the Grains in the Presence of Chelating Agents (Ethylenediaminedisuccinic Acid and Ethylenediaminetetraacetic Acid). Journal of Agricultural and Food Chemistry, 2008, 56, 4643-4649.	5.2	32
169	Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology, 2008, 42, 4447-4453.	10.0	1,593
170	Metal extractability in acidic and neutral mine tailings from the Cartagena-La Unión Mining District (SE Spain). Applied Geochemistry, 2008, 23, 1232-1240.	3.0	59
171	A new tool for in situ monitoring of Fe-mobilization in soils. Applied Geochemistry, 2008, 23, 3372-3383.	3.0	20
172	Chelating agents and the environment. Environmental Pollution, 2008, 153, 1-2.	7.5	32
173	Metal Solubility and Speciation in the Rhizosphere of Lupinus albus Cluster Roots. Environmental Science & Technology, 2008, 42, 7146-7151.	10.0	48
174	In situ transformations of fine lead oxide particles in different soils. Environmental Pollution, 2007, 145, 554-561.	7.5	22
175	Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Environmental Pollution, 2007, 145, 700-707.	7.5	87
176	Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 2007, 150, 5-22.	7.5	1,915
177	Coupled mobilization of dissolved organic matter and metals (Cu and Zn) in soil columns. Geochimica Et Cosmochimica Acta, 2007, 71, 3407-3418.	3.9	68
178	The Effects of Plants on the Mobilization of Cu and Zn in Soil Columns. Environmental Science & Technology, 2007, 41, 2770-2775.	10.0	57
179	A Laboratory Study on Revegetation and Metal Uptake in Native Plant Species from Neutral Mine Tailings. Water, Air, and Soil Pollution, 2007, 183, 201-212.	2.4	34
180	Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L Plant and Soil, 2007, 301, 123-134.	3.7	53

#	Article	IF	CITATIONS
181	Critical Assessment of Chelant-Enhanced Metal Phytoextraction. Environmental Science & Technology, 2006, 40, 5225-5232.	10.0	400
182	Uptake of Metals during Chelant-Assisted Phytoextraction with EDDS Related to the Solubilized Metal Concentration. Environmental Science & amp; Technology, 2006, 40, 2753-2758.	10.0	127
183	The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 2006, 62, 1454-1463.	8.2	182
184	In situ investigation of dissolution of heavy metal containing mineral particles in an acidic forest soil. Geochimica Et Cosmochimica Acta, 2006, 70, 2726-2736.	3.9	26
185	Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing. Environmental Pollution, 2006, 142, 191-199.	7.5	135
186	Competitive adsorption of phosphate and phosphonates onto goethite. Water Research, 2006, 40, 2201-2209.	11.3	140
187	Sorption of Trace Metals by Standard and Micro Suction Cups in the Absence and Presence of Dissolved Organic Carbon. Journal of Environmental Quality, 2006, 35, 50-60.	2.0	34
188	Verification and intercomparison of reactive transport codes to describe root-uptake. Plant and Soil, 2006, 285, 305-321.	3.7	45
189	Modified micro suction cup/rhizobox approach for the in-situ detection of organic acids in rhizosphere soil solution. Plant and Soil, 2006, 286, 99-107.	3.7	61
190	Determination of [S,S']-Ethylenediaminedisuccinic Acid by High-Performance Liquid Chromatography. Journal of Chromatographic Science, 2006, 44, 82-85.	1.4	4
191	Determination of [S,S′]-ethylenediamine disuccinic acid (EDDS) by high performance liquid chromatography after derivatization with FMOC. Journal of Chromatography A, 2005, 1077, 37-43.	3.7	28
192	Evaluation of immobilized metal-ion affinity chromatography for the fractionation of natural Cu complexing ligands. Journal of Chromatography A, 2005, 1100, 176-184.	3.7	17
193	Effects of Chelating Agents on Trace Metal Speciation and Bioavailability. ACS Symposium Series, 2005, , 204-224.	0.5	18
194	A New In Situ Method to Analyze Mineral Particle Reactions in Soils. Environmental Science & Technology, 2005, 39, 3302-3307.	10.0	14
195	Adsorption of Pb and Cd by amine-modified zeolite. Water Research, 2005, 39, 3287-3297.	11.3	128
196	Column Extraction of Heavy Metals from Soils Using the Biodegradable Chelating Agent EDDS. Environmental Science & Technology, 2005, 39, 6819-6824.	10.0	135
197	Chelating Agents in the Environment. ACS Symposium Series, 2005, , 1-18.	0.5	43
198	Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant and Soil, 2004, 265, 61-73.	3.7	60

#	Article	IF	CITATIONS
199	Use of Diffusive Gradients in Thin Films (DGT) in Undisturbed Field Soils. Environmental Science & Technology, 2004, 38, 1133-1138.	10.0	86
200	Extraction of Heavy Metals from Soils Using Biodegradable Chelating Agents. Environmental Science & Technology, 2004, 38, 937-944.	10.0	472
201	Manganese-catalyzed degradation of phosphonic acids. Environmental Chemistry Letters, 2003, 1, 24-31.	16.2	39
202	Environmental chemistry of phosphonates. Water Research, 2003, 37, 2533-2546.	11.3	389
203	Homogeneous and Heterogeneous Oxidation of Nitrilotrismethylenephosphonic Acid (NTMP) in the Presence of Manganese(II, III) and Molecular Oxygen. Journal of Physical Chemistry B, 2002, 106, 6227-6233.	2.6	46
204	Environmental Chemistry of Aminopolycarboxylate Chelating Agents. Environmental Science & Technology, 2002, 36, 4009-4016.	10.0	450
205	Aminopolyphosphonate removal during wastewater treatment. Water Research, 2002, 36, 4636-4642.	11.3	41
206	Determination of phosphonic acid breakdown products by high-performance liquid chromatography after derivatization. Journal of Chromatography A, 2002, 942, 185-190.	3.7	16
207	Elevated Lead and Zinc Contents in Remote Alpine Soils of the Swiss National Park. Journal of Environmental Quality, 2001, 30, 919-926.	2.0	42
208	The Remobilization of Metals from Iron Oxides and Sediments by Metal-EDTA Complexes. Water, Air, and Soil Pollution, 2001, 125, 243-257.	2.4	87
209	Methods for the photometric determination of reactive bromine and chlorine species with ABTS. Water Research, 2000, 34, 4343-4350.	11.3	173
210	Degradation of Nitrilotris(methylenephosphonic Acid) and Related (Amino)Phosphonate Chelating Agents in the Presence of Manganese and Molecular Oxygen. Environmental Science & Technology, 2000, 34, 4759-4765.	10.0	89
211	Heavy Metal Sorption on Clay Minerals Affected by the Siderophore Desferrioxamine B. Environmental Science & Technology, 2000, 34, 2749-2755.	10.0	154
212	Determination of chlorate at low μg/l levels by ion-chromatography with postcolumn reaction. Journal of Chromatography A, 1999, 849, 209-215.	3.7	23
213	Adsorption of Phosphonates onto the Goethite–Water Interface. Journal of Colloid and Interface Science, 1999, 214, 20-30.	9.4	95
214	The Influence of Metal Ions on the Adsorption of Phosphonates onto Goethite. Environmental Science & Technology, 1999, 33, 3627-3633.	10.0	82
215	The behavior of phosphonates in wastewater treatment plants of Switzerland. Water Research, 1998, 32, 1271-1279.	11.3	75
216	Influence of Natural and Anthropogenic Ligands on Metal Transport during Infiltration of River Water to Groundwater. Environmental Science & Technology, 1997, 31, 866-872.	10.0	75

#	Article	IF	CITATIONS
217	Determination of phosphonates in natural waters by ion-pair high-performance liquid chromatography. Journal of Chromatography A, 1997, 773, 139-146.	3.7	63
218	Modeling the Adsorption of Metalâ^`EDTA Complexes onto Oxides. Environmental Science & Technology, 1996, 30, 2397-2405.	10.0	131
219	Determination of Dissolved and Adsorbed EDTA Species in Water and Sediments by HPLC. Analytical Chemistry, 1996, 68, 561-566.	6.5	136
220	Adsorption of EDTA and Metal–EDTA Complexes onto Goethite. Journal of Colloid and Interface Science, 1996, 177, 106-121.	9.4	266
221	Comment on "Nickel Adsorption to Hydrous Ferric Oxide in the Presence of EDTA: Effects of Component Addition Sequence". Environmental Science & Technology, 1995, 29, 3070-3071.	10.0	5
222	Approach toward <i>In Vitro</i> -Based Human Toxicity Effect Factors for the Life Cycle Impact Assessment of Inhaled Low-Solubility Particles. Environmental Science & Technology, 0, , .	10.0	0