Michael J Cordon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5112776/publications.pdf

Version: 2024-02-01

1684188 1872680 6 502 5 6 citations g-index h-index papers 6 6 6 601 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization. Journal of Catalysis, 2016, 335, 141-154.	6.2	223
2	Cooperative Effects between Hydrophilic Pores and Solvents: Catalytic Consequences of Hydrogen Bonding on Alkene Epoxidation in Zeolites. Journal of the American Chemical Society, 2019, 141, 7302-7319.	13.7	142
3	Dominant Role of Entropy in Stabilizing Sugar Isomerization Transition States within Hydrophobic Zeolite Pores. Journal of the American Chemical Society, 2018, 140, 14244-14266.	13.7	83
4	Deactivation of Sn-Beta zeolites caused by structural transformation of hydrophobic to hydrophilic micropores during aqueous-phase glucose isomerization. Catalysis Science and Technology, 2019, 9, 1654-1668.	4.1	40
5	Tighter Confinement Increases Selectivity of <scp>d</scp> â€Glucose Isomerization Toward <scp>l</scp> â€Gorbose in Titanium Zeolites. Angewandte Chemie - International Edition, 2020, 59, 19102-19107.	13.8	13
6	Tighter Confinement Increases Selectivity of d â€Glucose Isomerization Toward I â€Sorbose in Titanium Zeolites. Angewandte Chemie, 2020, 132, 19264-19269.	2.0	1