Kenneth D Karlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5112730/publications.pdf

Version: 2024-02-01

311 papers

23,632 citations

79 h-index 128 g-index

398 all docs 398 docs citations

times ranked

398

14546 citing authors

#	Article	IF	CITATIONS
1	End-On Copper(I) Superoxo and Cu(II) Peroxo and Hydroperoxo Complexes Generated by Cryoreduction/Annealing and Characterized by EPR/ENDOR Spectroscopy. Journal of the American Chemical Society, 2022, 144, 377-389.	6.6	17
2	Concluding remarks: discussion on natural and artificial enzymes including synthetic models. Faraday Discussions, 2022, 234, 388-404.	1.6	0
3	Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for Hâ€Atom Transfer (HAT). Angewandte Chemie - International Edition, 2021, 60, 5907-5912.	7.2	10
4	Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for Hâ€Atom Transfer (HAT). Angewandte Chemie, 2021, 133, 5972-5977.	1.6	1
5	A Thioether-Ligated Cupric Superoxide Model with Hydrogen Atom Abstraction Reactivity. Journal of the American Chemical Society, 2021, 143, 3707-3713.	6.6	23
6	Proton Relay in Iron Porphyrins for Hydrogen Evolution Reaction. Inorganic Chemistry, 2021, 60, 13876-13887.	1.9	26
7	Heme-Fe ^{III} Superoxide, Peroxide and Hydroperoxide Thermodynamic Relationships: Fe ^{III} -O ₂ ^{•–} Complex H-Atom Abstraction Reactivity. Journal of the American Chemical Society, 2020, 142, 3104-3116.	6.6	40
8	Copper Enzymes Involved in Multi-Electron Processes. , 2020, , 524-524.		0
9	$K\hat{l}^2$ X-ray Emission Spectroscopy as a Probe of Cu(I) Sites: Application to the Cu(I) Site in Preprocessed Galactose Oxidase. Inorganic Chemistry, 2020, 59, 16567-16581.	1.9	10
10	Direct Resonance Raman Characterization of a Peroxynitrito Copper Complex Generated from O 2 and NO and Mechanistic Insights into Metalâ€Mediated Peroxynitrite Decomposition. Angewandte Chemie, 2019, 131, 11052-11056.	1.6	1
11	Enhanced Rates of C–H Bond Cleavage by a Hydrogen-Bonded Synthetic Heme High-Valent Iron(IV) Oxo Complex. Journal of the American Chemical Society, 2019, 141, 12558-12569.	6.6	39
12	Ligand Identity-Induced Generation of Enhanced Oxidative Hydrogen Atom Transfer Reactivity for a Cull2(O2•–) Complex Driven by Formation of a Cull2(â"OOH) Compound with a Strong O–H Bond. Journal of the American Chemical Society, 2019, 141, 12682-12696.	6.6	28
13	Copper(I) Complex Mediated Nitric Oxide Reductive Coupling: Ligand Hydrogen Bonding Derived Proton Transfer Promotes N ₂ O _(g) Release. Journal of the American Chemical Society, 2019, 141, 17962-17967.	6.6	20
14	Impact of Intramolecular Hydrogen Bonding on the Reactivity of Cupric Superoxide Complexes with Oâ^'H and Câ^'H Substrates. Angewandte Chemie, 2019, 131, 17736-17740.	1.6	2
15	Impact of Intramolecular Hydrogen Bonding on the Reactivity of Cupric Superoxide Complexes with Oâ^'H and Câ^'H Substrates. Angewandte Chemie - International Edition, 2019, 58, 17572-17576.	7.2	28
16	Dimethylanilinic <i>N</i> Oxides and Their Oxygen Surrogacy Role in the Formation of a Putative High-Valent Copper–Oxygen Species. Inorganic Chemistry, 2019, 58, 13746-13750.	1.9	9
17	Heme–Cu Binucleating Ligand Supports Heme/O2and Fell–Cul/O2Reactivity Providing High- and Low-Spin Felll–Peroxo–CullComplexes. Inorganic Chemistry, 2019, 58, 15423-15432.	1.9	8
18	Influence of intramolecular secondary sphere hydrogen-bonding interactions on cytochrome ⟨i⟩c⟨ i⟩ oxidase inspired low-spin heme–peroxo–copper complexes. Chemical Science, 2019, 10, 2893-2905.	3.7	20

#	Article	IF	CITATIONS
19	Formation and Reactivity of New Isoporphyrins: Implications for Understanding the Tyr-His Cross-Link Cofactor Biogenesis in Cytochrome <i>c</i> Oxidase. Journal of the American Chemical Society, 2019, 141, 10632-10643.	6.6	21
20	Direct Resonance Raman Characterization of a Peroxynitrito Copper Complex Generated from O ₂ and NO and Mechanistic Insights into Metalâ€Mediated Peroxynitrite Decomposition. Angewandte Chemie - International Edition, 2019, 58, 10936-10940.	7.2	19
21	Spin Interconversion of Heme-Peroxo-Copper Complexes Facilitated by Intramolecular Hydrogen-Bonding Interactions. Journal of the American Chemical Society, 2019, 141, 4936-4951.	6.6	13
22	Tuning the Geometric and Electronic Structure of Synthetic High-Valent Heme Iron(IV)-Oxo Models in the Presence of a Lewis Acid and Various Axial Ligands. Journal of the American Chemical Society, 2019, 141, 5942-5960.	6.6	54
23	Unprecedented direct cupric-superoxo conversion to a bis-ν-oxo dicopper(III) complex and resulting oxidative activity. Inorganica Chimica Acta, 2019, 485, 155-161.	1.2	4
24	Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chemical Reviews, 2018, 118, 10840-11022.	23.0	166
25	Intramolecular Hydrogen Bonding Enhances Stability and Reactivity of Mononuclear Cupric Superoxide Complexes. Journal of the American Chemical Society, 2018, 140, 9042-9045.	6.6	70
26	A mononuclear nonheme {FeNO} ⁶ complex: synthesis and structural and spectroscopic characterization. Chemical Science, 2018, 9, 6952-6960.	3.7	11
27	Substrate and Lewis Acid Coordination Promote O–O Bond Cleavage of an Unreactive L ₂ Cu ^{II} ₂ (O ₂ ^{2–}) Species to Form L ₂ Cu ^{Sub>Cu^{III}₂Cores with Enhanced Oxidative Reactivity. Journal of the American Chemical Society. 2017. 139. 3186-3195.}	6.6	50
28	Activation of dioxygen by copper metalloproteins and insights from model complexes. Journal of Biological Inorganic Chemistry, 2017, 22, 253-288.	1.1	173
29	Phenol-Induced O–O Bond Cleavage in a Low-Spin Heme–Peroxo–Copper Complex: Implications for O ₂ Reduction in Heme–Copper Oxidases. Journal of the American Chemical Society, 2017, 139, 7958-7973.	6.6	43
30	Critical Aspects of Heme–Peroxo–Cu Complex Structure and Nature of Proton Source Dictate Metal–O _{peroxo} Breakage versus Reductive O–O Cleavage Chemistry. Journal of the American Chemical Society, 2017, 139, 472-481.	6.6	38
31	Direct Determination of Electronâ€Transfer Properties of Dicopperâ€Bound Reduced Dioxygen Species by a Cryoâ€Spectroelectrochemical Approach Chemistry - A European Journal, 2017, 23, 18314-18319.	1.7	12
32	A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complexâ€"The Product of the Reaction of Nitrogen Monoxide (·NO _(g)) with a Ferric-Superoxide Species. Journal of the American Chemical Society, 2017, 139, 17421-17430.	6.6	40
33	Copper(I)/NO _(g) Reductive Coupling Producing a <i>trans</i> -Hyponitrite Bridged Dicopper(II) Complex: Redox Reversal Giving Copper(I)/NO _(g) Disproportionation. Journal of the American Chemical Society, 2017, 139, 13276-13279.	6.6	46
34	A Peroxynitrite Dicopper Complex: Formation via Cu–NO and Cu–O2Intermediates and Reactivity via O–O Cleavage Chemistry. Journal of the American Chemical Society, 2016, 138, 16148-16158.	6.6	27
35	Peroxo and Superoxo Moieties Bound to Copper Ion: Electron-Transfer Equilibrium with a Small Reorganization Energy. Journal of the American Chemical Society, 2016, 138, 7055-7066.	6.6	52
36	Factors That Control the Reactivity of Cobalt(III)–Nitrosyl Complexes in Nitric Oxide Transfer and Dioxygenation Reactions: A Combined Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2016, 138, 7753-7762.	6.6	36

#	Article	IF	CITATIONS
37	Mechanistic Insight into the Nitric Oxide Dioxygenation Reaction of Nonheme Iron(III)–Superoxo and Manganese(IV)–Peroxo Complexes. Angewandte Chemie, 2016, 128, 12591-12595.	1.6	5
38	Mechanistic Insight into the Nitric Oxide Dioxygenation Reaction of Nonheme Iron(III)–Superoxo and Manganese(IV)–Peroxo Complexes. Angewandte Chemie - International Edition, 2016, 55, 12403-12407.	7.2	23
39	Copper(I)â€Dioxygen Adducts and Copper Enzyme Mechanisms. Israel Journal of Chemistry, 2016, 56, 738-755.	1.0	57
40	Isocyanide or nitrosyl complexation to hemes with varying tethered axial base ligand donors: synthesis and characterization. Journal of Biological Inorganic Chemistry, 2016, 21, 729-743.	1.1	8
41	Dioxygen Activation by a Macrocyclic Copper Complex Leads to a Cu ₂ O ₂ Core with Unexpected Structure and Reactivity. Chemistry - A European Journal, 2016, 22, 5133-5137.	1.7	25
42	One-step selective hydroxylation of benzene to phenol with hydrogen peroxide catalysed by copper complexes incorporated into mesoporous silica–alumina. Chemical Science, 2016, 7, 2856-2863.	3.7	106
43	Laser-Induced Dynamics of Peroxodicopper(II) Complexes Vary with the Ligand Architecture. One-Photon Two-Electron O ₂ Ejection and Formation of Mixed-Valent Cu ^I Cu ^{II} –Superoxide Intermediates. Journal of the American Chemical Society, 2015. 137. 15865-15874.	6.6	21
44	Lewis Acid-Induced Change from Four- to Two-Electron Reduction of Dioxygen Catalyzed by Copper Complexes Using Scandium Triflate. Journal of the American Chemical Society, 2015, 137, 3330-3337.	6.6	52
45	A N ₃ S _(thioether) -Ligated Cu ^{II} -Superoxo with Enhanced Reactivity. Journal of the American Chemical Society, 2015, 137, 2796-2799.	6.6	66
46	A "Naked―FeIII-(O22–)-Cull Species Allows for Structural and Spectroscopic Tuning of Low-Spin Heme-Peroxo-Cu Complexes. Journal of the American Chemical Society, 2015, 137, 1032-1035.	6.6	36
47	Amine Oxidative N-Dealkylation via Cupric Hydroperoxide Cu-OOH Homolytic Cleavage Followed by Site-Specific Fenton Chemistry. Journal of the American Chemical Society, 2015, 137, 2867-2874.	6.6	100
48	Reactions of a heme-superoxo complex toward a cuprous chelate and $\hat{a} \in NO < g < g < g < g < g < g < g < g < g < $	0.4	13
49	Nitrogen Oxide Atom-Transfer Redox Chemistry; Mechanism of NO _(g) to Nitrite Conversion Utilizing μ-oxo Heme-Fe ^{ll} â€"Oâ€"Cu ^{ll} (L) Constructs. Journal of the American Chemical Society, 2015, 137, 6602-6615.	6.6	27
50	Reactions of Co(III)–Nitrosyl Complexes with Superoxide and Their Mechanistic Insights. Journal of the American Chemical Society, 2015, 137, 4284-4287.	6.6	38
51	Elaboration of copper–oxygen mediated C–H activation chemistry in consideration of future fuel and feedstock generation. Current Opinion in Chemical Biology, 2015, 25, 184-193.	2.8	102
52	Electrocatalytic O ₂ -Reduction by Synthetic Cytochrome ⟨i⟩c⟨/i⟩ Oxidase Mimics: Identification of a "Bridging Peroxo―Intermediate Involved in Facile 4e ^{–⟨sup⟩/4H⟨sup⟩+⟨ sup⟩ O_{2< sub>-Reduction. Journal of the American Chemical Society, 2015, 137, 12897-12905.}}	6.6	100
53	Synthetic Heme/Copper Assemblies: Toward an Understanding of Cytochrome <i>c</i> Oxidase Interactions with Dioxygen and Nitrogen Oxides. Accounts of Chemical Research, 2015, 48, 2462-2474.	7.6	89
54	Cumulative Index, Volumes 1-59. Progress in Inorganic Chemistry, 2014, , 561-584.	3.0	0

#	Article	IF	CITATIONS
55	Wiley End User License Agreement. Progress in Inorganic Chemistry, 2014, , a-a.	3.0	O
56	Observation of a Cu ^{II} _{(μâ€1,2â€peroxo)/Cu^{III}₂(μâ€oxo)₂ Equand its Implications for Copper–Dioxygen Reactivity. Angewandte Chemie - International Edition, 2014, 53, 4935-4939.}	ilibrium 7.2	53
57	Tuning of the Copper–Thioether Bond in Tetradentate N ₃ S _(thioether) Ligands; O–O Bond Reductive Cleavage via a [Cu ^{II} ₂ (μ-1,2-peroxo)] ²⁺ /[Cu ^{III} ₂ (μ-oxo) _{Equilibrium, lournal of the American Chemical Society, 2014, 136, 8063-8071.}	>2 ⁶ :/sub>]	²⁺
58	Mechanistic Insights into the Oxidation of Substituted Phenols via Hydrogen Atom Abstraction by a Cupric–Superoxo Complex. Journal of the American Chemical Society, 2014, 136, 9925-9937.	6.6	125
59	Copper–Peptide Complex Structure and Reactivity When Found in Conserved His-X _{aa} -His Sequences. Journal of the American Chemical Society, 2014, 136, 12532-12535.	6.6	29
60	A Selective Stepwise Heme Oxygenase Model System: An Iron(IV)-Oxo Porphyrin π-Cation Radical Leads to a Verdoheme-Type Compound via an Isoporphyrin Intermediate. Journal of the American Chemical Society, 2013, 135, 16248-16251.	6.6	38
61	Correlation of the Electronic and Geometric Structures in Mononuclear Copper(II) Superoxide Complexes. Inorganic Chemistry, 2013, 52, 12872-12874.	1.9	45
62	L-Edge X-ray Absorption Spectroscopy and DFT Calculations on Cu ₂ O ₂ Species: Direct Electrophilic Aromatic Attack by Side-on Peroxo Bridged Dicopper(II) Complexes. Journal of the American Chemical Society, 2013, 135, 17417-17431.	6.6	50
63	Reactions of a Chromium(III)-Superoxo Complex and Nitric Oxide That Lead to the Formation of Chromium(IV)-Oxo and Chromium(III)-Nitrito Complexes. Journal of the American Chemical Society, 2013, 135, 14900-14903.	6.6	49
64	New heme–dioxygen and carbon monoxide adducts using pyridyl or imidazolyl tailed porphyrins. Polyhedron, 2013, 58, 190-196.	1.0	12
65	Enhanced Catalytic Four-Electron Dioxygen (O ₂) and Two-Electron Hydrogen Peroxide (H ₂) Complex Possessing a Pendant Ligand Pivalamido Group. Journal of the American Chemical Society, 2013, 135, 6513-6522.	6.6	98
66	Temperature-Independent Catalytic Two-Electron Reduction of Dioxygen by Ferrocenes with a Copper(II) Tris[2-(2-pyridyl)ethyl]amine Catalyst in the Presence of Perchloric Acid. Journal of the American Chemical Society, 2013, 135, 2825-2834.	6.6	68
67	Acid-Induced Mechanism Change and Overpotential Decrease in Dioxygen Reduction Catalysis with a Dinuclear Copper Complex. Journal of the American Chemical Society, 2013, 135, 4018-4026.	6.6	56
68	Stepwise Protonation and Electron-Transfer Reduction of a Primary Copper–Dioxygen Adduct. Journal of the American Chemical Society, 2013, 135, 16454-16467.	6.6	74
69	Computational study of the activated O _H state in the catalytic mechanism of cytochrome <i>c</i> oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16844-16849.	3.3	56
70	Coordination Chemistry and Reactivity of a Cupric Hydroperoxide Species Featuring a Proximal H-Bonding Substituent. Inorganic Chemistry, 2012, 51, 12603-12605.	1.9	63
71	Heme/Copper Assembly Mediated Nitrite and Nitric Oxide Interconversion. Journal of the American Chemical Society, 2012, 134, 18912-18915.	6.6	44
72	Geometric and Electronic Structure of [{Cu(MeAN)} ₂ (1 ¹ / ₄ -1· ^{2:1·^{2(O₂_{2a€"}}))]^{2+ with an Unusually Long O–O Bond: O–O Bond Weakening vs Activation for Reductive Cleavage. Journal of the American Chemical Society, 2012, 134, 8513-8524.}}	sup>	55

#	Article	IF	CITATIONS
73	Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochimica Acta, 2012, 82, 493-511.	2.6	245
74	Chromium(IV)–Peroxo Complex Formation and Its Nitric Oxide Dioxygenase Reactivity. Journal of the American Chemical Society, 2012, 134, 15269-15272.	6.6	71
75	Factors That Control Catalytic Two- versus Four-Electron Reduction of Dioxygen by Copper Complexes. Journal of the American Chemical Society, 2012, 134, 7025-7035.	6.6	84
76	Reversible dioxygen binding and arene hydroxylation reactions: Kinetic and thermodynamic studies involving ligand electronic and structural variations. Inorganica Chimica Acta, 2012, 389, 138-150.	1.2	11
77	Spectroscopic Elucidation of a New Heme/Copper Dioxygen Structure Type: Implications for Oâ‹â‹ô Bond Rupture in Cytochromeâ€c Oxidase. Angewandte Chemie - International Edition, 2012, 51, 168-172.	7.2	42
78	Spectroscopic and computational characterization of Cull–OOR (R = H or cumyl) complexes bearing a Me6-tren ligand. Dalton Transactions, 2011, 40, 2234.	1.6	39
79	Electronic Structure of a Low-Spin Heme/Cu Peroxide Complex: Spin-State and Spin-Topology Contributions to Reactivity. Inorganic Chemistry, 2011, 50, 11777-11786.	1.9	29
80	Cupric Superoxo-Mediated Intermolecular Câ^'H Activation Chemistry. Journal of the American Chemical Society, 2011, 133, 1702-1705.	6.6	141
81	Homogeneous catalytic O2 reduction to water by a cytochrome c oxidase model with trapping of intermediates and mechanistic insights. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13990-13994.	3.3	102
82	One is Lonely and Three is a Crowd: Two Coppers Are for Methane Oxidation. Angewandte Chemie - International Edition, 2010, 49, 6714-6716.	7.2	85
83	Model offers intermediate insight. Nature, 2010, 463, 168-169.	13.7	43
84	Spectroscopic and Computational Studies of an End-on Bound Superoxo-Cu(II) Complex: Geometric and Electronic Factors That Determine the Ground State. Inorganic Chemistry, 2010, 49, 9450-9459.	1.9	102
85	CO and O ₂ Binding to Pseudo-tetradentate Ligandâ^'Copper(I) Complexes with a Variable N-Donor Moiety: Kinetic/Thermodynamic Investigation Reveals Ligand-Induced Changes in Reaction Mechanism. Journal of the American Chemical Society, 2010, 132, 12927-12940.	6.6	33
86	Bioinspired Heme, Heme/Nonheme Diiron, Heme/Copper, and Inorganic NOx Chemistry: •NO _(g) Oxidation, Peroxynitriteâ~'Metal Chemistry, and •NO _(g) Reductive Coupling. Inorganic Chemistry, 2010, 49, 6267-6282.	1.9	95
87	Sulfur Donor Atom Effects on Copper(I)/O ₂ Chemistry with Thioanisole Containing Tetradentate N ₃ S Ligand Leading to ν-1,2-Peroxo-Dicopper(II) Species. Inorganic Chemistry, 2010, 49, 8873-8885.	1.9	37
88	Hemeâ^'Copperâ^'Dioxygen Complexes: Toward Understanding Ligand-Environmental Effects on the Coordination Geometry, Electronic Structure, and Reactivity. Inorganic Chemistry, 2010, 49, 3629-3645.	1.9	66
89	Mononuclear Copper Complex-Catalyzed Four-Electron Reduction of Oxygen. Journal of the American Chemical Society, 2010, 132, 6874-6875.	6.6	127
90	Thioether S-ligation in a side-on ν-Î- ² :Î-2-peroxodicopper(ii) complex. Chemical Communications, 2010, 46, 91-93.	2.2	29

#	Article	IF	CITATIONS
91	Reductive Coupling of Nitrogen Monoxide (•NO) Facilitated by Heme/Copper Complexes. Inorganic Chemistry, 2010, 49, 1404-1419.	1.9	51
92	Cumulative Index, Volumes 1-56. Progress in Inorganic Chemistry, 2009, , 569-586.	3.0	0
93	A peroxynitrite complex of copper: formation from a copper–nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration. Journal of Biological Inorganic Chemistry, 2009, 14, 1301-1311.	1.1	52
94	Copper–dioxygen complex mediated C–H bond oxygenation: relevance for particulate methane monooxygenase (pMMO). Current Opinion in Chemical Biology, 2009, 13, 119-131.	2.8	212
95	Copper(I)/O ₂ Chemistry with Imidazole Containing Tripodal Tetradentate Ligands Leading to I¼-1,2-Peroxoâ^'Dicopper(II) Species. Inorganic Chemistry, 2009, 48, 11297-11309.	1.9	47
96	Heme/O ₂ /•NO Nitric Oxide Dioxygenase (NOD) Reactivity: Phenolic Nitration via a Putative Heme-Peroxynitrite Intermediate. Journal of the American Chemical Society, 2009, 131, 11304-11305.	6.6	67
97	Carbon Monoxide and Nitrogen Monoxide Ligand Dynamics in Synthetic Heme and Hemeâ^'Copper Complex Systems. Journal of the American Chemical Society, 2009, 131, 13924-13925.	6.6	20
98	Heme-Copper Assembly Mediated Reductive Coupling of Nitrogen Monoxide (·NO). Journal of the American Chemical Society, 2009, 131, 450-451.	6.6	47
99	Reactions of a Copper(II) Superoxo Complex Lead to CH and OH Substrate Oxygenation: Modeling Copperâ€Monooxygenase CH Hydroxylation. Angewandte Chemie - International Edition, 2008, 47, 82-85.	7.2	202
100	Structural Studies of Copper(I) Complexes of Amyloidâ€Î² Peptide Fragments: Formation of Twoâ€Coordinate Bis(histidine) Complexes. Angewandte Chemie - International Edition, 2008, 47, 9084-9087.	7.2	133
101	Cumulative Index, Volumes 1-55. Progress in Inorganic Chemistry, 2008, , 743-759.	3.0	0
102	Intermolecular versus intramolecular electron-/atom- (Cl) transfer in heme-iron and copper pyridylalkylamine complexes. Inorganica Chimica Acta, 2008, 361, 1100-1115.	1.2	3
103	Copper Dioxygen Adducts: Formation of Bis($\hat{l}\frac{1}{4}$ -oxo)dicopper(III) versus ($\hat{l}\frac{1}{4}$ -1,2)Peroxodicopper(II) Complexes with Small Changes in One Pyridyl-Ligand Substituent. Inorganic Chemistry, 2008, 47, 3787-3800.	1.9	61
104	Copperâ^'Hydroperoxo-Mediated N-Debenzylation Chemistry Mimicking Aspects of Copper Monooxygenases. Inorganic Chemistry, 2008, 47, 8736-8747.	1.9	59
105	Carbon Monoxide Coordination and Reversible Photodissociation in Copper(I) Pyridylalkylamine Compounds. Inorganic Chemistry, 2008, 47, 241-256.	1.9	41
106	Reaction of a Copperâ^'Dioxygen Complex with Nitrogen Monoxide (•NO) Leads to a Copper(II)â^'Peroxynitrite Species. Journal of the American Chemical Society, 2008, 130, 6700-6701.	6.6	78
107	Coordination Chemistry of Azacryptands. Progress in Inorganic Chemistry, 2007, , 167-316.	3.0	56
108	Organoimido Complexes of the Transition Metals. Progress in Inorganic Chemistry, 2007, , 239-482.	3.0	288

#	Article	IF	Citations
109	The Chemistry of Peroxonitrites. Progress in Inorganic Chemistry, 2007, , 599-635.	3.0	57
110	Texaphyrins: Synthesis and Development of a Novel Class of Therapeutic Agents. Progress in Inorganic Chemistry, 2007, , 551-598.	3.0	40
111	Macrocyclic Polyamine Zinc(II) Complexes as Advanced Models for Zinc(II) Enzymes. Progress in Inorganic Chemistry, 2007, , 443-491.	3.0	86
112	Higher Oligopyridines as a Structural Motif in Metallosupramolecular Chemistry. Progress in Inorganic Chemistry, 2007, , $67-138$.	3.0	153
113	The Chemistry of Nickel-Containing Enzymes. Progress in Inorganic Chemistry, 2007, , 493-597.	3.0	68
114	Langmuir-Blodgett Films of Transition Metal Complexes. Progress in Inorganic Chemistry, 2007, , 97-142.	3.0	2
115	Oxovanadium and Oxomolybdenum Clusters and Solids Incorporating Oxygen-Donor Ligands. Progress in Inorganic Chemistry, 2007, , $1-149$.	3.0	131
116	The Influence of Ligands on Dirhodium(II) on Reactivity and Selectivity in Metal Carbene Reactions. Progress in Inorganic Chemistry, 2007, , 113-168.	3.0	63
117	Metal Phosphonate Chemistry. Progress in Inorganic Chemistry, 2007, , 371-510.	3.0	326
118	Copper(I), Lithium, and Magnesium Thiolate Complexes: An Overview with Due Mention of Selenolate and Tellurolate Analogues and Related Silver(I) and Gold(I) Species. Progress in Inorganic Chemistry, 2007, , 97-149.	3.0	30
119	Oxygen Activation Mechanism at the Binuclear Site of Heme-Copper Oxidase Superfamily as Revealed by Time-Resolved Resonance Raman Spectroscopy. Progress in Inorganic Chemistry, 2007, , 431-479.	3.0	50
120	Anion Binding and Recognition by Inorganic Based Receptors. Progress in Inorganic Chemistry, 2007, , 1-96.	3.0	88
121	Palladium Complex Catalyzed Oxidation Reactions. Progress in Inorganic Chemistry, 2007, , 483-576.	3.0	27
122	The Chemistry of Synthetic Fe-Mo-S Clusters and their Relevance to the Structure and Function of the Fe-Mo-S Center in Nitrogenase. Progress in Inorganic Chemistry, 2007, , 599-662.	3.0	45
123	The Coordination Chemistry of Phosphinines: Their Polydentate and Macrocyclic Derivatives. Progress in Inorganic Chemistry, 2007, , 455-550.	3.0	43
124	X-Ray Crystallography: A Fast, First-Resort Analytical Tool. Progress in Inorganic Chemistry, 2007, , 1-19.	3.0	106
125	Metal-Carbohydrate Complexes in Solution. Progress in Inorganic Chemistry, 2007, , 837-945.	3.0	55
126	Recent Trends in Metal Alkoxide Chemistry. Progress in Inorganic Chemistry, 2007, , 239-454.	3.0	83

#	Article	IF	CITATIONS
127	Heme–Copper/Dioxygen Adduct Formation, Properties, and Reactivity. Accounts of Chemical Research, 2007, 40, 563-572.	7.6	141
128	A Supramolecular Approach to Light Harvesting and Sensitization of Wide-Bandgap Semiconductors: Antenna Effects and Charge Separation. Progress in Inorganic Chemistry, 2007, , 1-95.	3.0	61
129	Molecular and Supramolecular Surface Modification of Nanocrystalline TiO2Films: Charge-Separating and Charge-Injecting Devices. Progress in Inorganic Chemistry, 2007, , 345-393.	3.0	50
130	Coordination Chemistry with Sterically Hindered Hydrotris(pyrazolyl)borate Ligands: Organometallic and Bioinorganic Perspectives. Progress in Inorganic Chemistry, 2007, , 419-531.	3.0	188
131	Synthesis and X-ray Absorption Spectroscopy Structural Studies of Cu(I) Complexes of HistidylHistidine Peptides:Â The Predominance of Linear 2-Coordinate Geometry. Journal of the American Chemical Society, 2007, 129, 5352-5353.	6.6	92
132	Copper(II)â^'Hydroperoxo Complex Induced Oxidative N-Dealkylation Chemistry. Journal of the American Chemical Society, 2007, 129, 6720-6721.	6.6	81
133	Ternary Transition Metal Sulfides. Progress in Inorganic Chemistry, 2007, , 139-237.	3.0	13
134	Generation and Characterization of $[(P)M\hat{a}^{*}(X)\hat{a}^{*}Co(TMPA)]n+Assemblies; P = Porphyrinate, M = Fellland Colli, X = O2-, OH-, O22-, and TMPA = Tris(2-pyridylmethyl)amine. Inorganic Chemistry, 2007, 46, 3017-3026.$	1.9	23
135	Reactivity Studies on Felllâ [*] (O22-)â [*] CullCompounds:Â Influence of the Ligand Architecture and Copper Ligand Denticity. Inorganic Chemistry, 2007, 46, 6382-6394.	1.9	38
136	Aryl Hydroxylation from a Mononuclear Copper-Hydroperoxo Species. Journal of the American Chemical Society, 2007, 129, 6998-6999.	6.6	121
137	Copper(I) Complex O2-Reactivity with a N3S Thioether Ligand:Â a Copperâ^'Dioxygen Adduct Including Sulfur Ligation, Ligand Oxygenation, and Comparisons with All Nitrogen Ligand Analogues. Inorganic Chemistry, 2007, 46, 6056-6068.	1.9	62
138	Principles and Applications of Semiconductor Photoelectrochemistry. Progress in Inorganic Chemistry, 2007, , 21-144.	3.0	130
139	Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives. Progress in Inorganic Chemistry, 2007, , 283-391.	3.0	469
140	Polyoxometalate Complexes in Organic Oxidation Chemistry. Progress in Inorganic Chemistry, 2007, , 317-370.	3.0	273
141	The Application of Polychalcogenide Salts to the Exploratory Synthesis of Solid State Multinary Chalcogenides at Intermediate Temperatures. Progress in Inorganic Chemistry, 2007, , 151-265.	3.0	123
142	Further Insights into the Spectroscopic Properties, Electronic Structure, and Kinetics of Formation of the Hemeâ''Peroxoâ''Copper Complex [(F8TPP)Felllâ''(O22-)â''Cull(TMPA)]+. Inorganic Chemistry, 2007, 46, 3889-3902.	1.9	27
143	Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials. Progress in Inorganic Chemistry, 2007, , 1-121.	3.0	566
144	The Chemistry of Transition Metal Complexes Containing Catechol and Semiquinone Ligands. Progress in Inorganic Chemistry, 2007, , 331-442.	3.0	307

#	Article	IF	Citations
145	The Interpretation of Ligand Field Parameters. Progress in Inorganic Chemistry, 2007, , 179-281.	3.0	24
146	Three-Coordinate Complexes of "Hard―Ligands: Advances in Synthesis, Structure and Reactivity. Progress in Inorganic Chemistry, 2007, , 685-836.	3.0	48
147	Metal Complexes of Calixarenes. Progress in Inorganic Chemistry, 2007, , 533-592.	3.0	82
148	Terminal Chalcogenido Complexes of the Transition Metals. Progress in Inorganic Chemistry, 2007, , 1-165.	3.0	31
149	Coordination Chemistry of Transition Metals with Hydrogen Chalcogenide and Hydrochalcogenido Ligands. Progress in Inorganic Chemistry, 2007, , 169-453.	3.0	22
150	Nonclassical Metal Carbonyls. Progress in Inorganic Chemistry, 2007, , 1-112.	3.0	94
151	A 1:1 Copperâ "Dioxygen Adduct is an End-on Bound Superoxo Copper(II) Complex which Undergoes Oxygenation Reactions with Phenols. Journal of the American Chemical Society, 2007, 129, 264-265.	6.6	177
152	Transition Metals in Polymeric π-Conjugated Organic Frameworks. Progress in Inorganic Chemistry, 2007, , 123-231.	3.0	118
153	Native and Surface Modified Semiconductor Nanoclusters. Progress in Inorganic Chemistry, 2007, , 273-343.	3.0	25
154	The Role of the Pyrazolate Ligand in Building Polynuclear Transition Metal Systems. Progress in Inorganic Chemistry, 2007, , 151-238.	3.0	204
155	The Transition Metal Coordination Chemistry of Hemilabile Ligands. Progress in Inorganic Chemistry, 2007, , 233-350.	3.0	317
156	Reactivity Study of a Hydroperoxodicopper(II) Complex:  Hydroxylation, Dehydrogenation, and Ligand Cross-Link Reactions. Inorganic Chemistry, 2006, 45, 7160-7172.	1.9	33
157	Ligand Influences in Copper-Dioxygen Complex-Formation and Substrate Oxidations. Advances in Inorganic Chemistry, 2006, , 131-184.	0.4	95
158	Copperâ^'Dioxygen Adducts and the Side-on Peroxo Dicopper(II)/Bis($\hat{l}\frac{1}{4}$ -oxo) Dicopper(III) Equilibrium:Â Significant Ligand Electronic Effects. Inorganic Chemistry, 2006, 45, 3004-3013.	1.9	79
159	Dioxygen Reactivity of a Copper(I) Complex with a N3S Thioether Chelate; Peroxoâ^Dicopper(II) Formation Including Sulfur-Ligation. Inorganic Chemistry, 2006, 45, 10055-10057.	1.9	40
160	Synthesis and Characterization of PY2- and TPA-Appended Diphenylglycoluril Receptors and Their Bis-Cul Complexes. European Journal of Organic Chemistry, 2006, 2006, 2281-2295.	1.2	11
161	Nitrogen Monoxide and Nitrous Oxide Binding and Reduction. , 2006, , 43-79.		24
162	Alterations of Nucleobase pK a Values upon Metal Coordination: Origins and Consequences. Progress in Inorganic Chemistry, 2005, , 385-447.	3.0	93

#	Article	IF	CITATIONS
163	Trivalent Uranium: A Versatile Species for Molecular Activation. Progress in Inorganic Chemistry, 2005, , 321-348.	3.0	19
164	Heme-copper/dioxygen adduct formation relevant to cytochrome c oxidase: spectroscopic characterization of [(6L)FeIII-(O22?)-CuII]+. Journal of Biological Inorganic Chemistry, 2005, 10, 63-77.	1.1	25
165	Functionalization of Myoglobin. Progress in Inorganic Chemistry, 2005, , 449-493.	3.0	12
166	Cumulative Index, Volumes 1-54. Progress in Inorganic Chemistry, 2005, , 519-535.	3.0	0
167	Comparison of the Chemical Biology of NO and HNO: An Inorganic Perspective. Progress in Inorganic Chemistry, 2005, , 349-384.	3.0	11
168	Stereochemical Aspects of Metal Xanthate Complexes: Molecular Structures and Supramolecular Self-Assembly. Progress in Inorganic Chemistry, 2005, , 127-319.	3.0	165
169	Atomlike Building Units of Adjustable Character: Solid-State and Solution Routes to Manipulating Hexanuclear Transition Metal Chalcohalide Clusters. Progress in Inorganic Chemistry, 2005, , 1-45.	3.0	29
170	Tridentate Copper Ligand Influences on Hemeâ^'Peroxoâ^'Copper Formation and Properties: Reduced, Superoxo, and μ-Peroxo Iron/Copper Complexes. Inorganic Chemistry, 2005, 44, 7014-7029.	1.9	38
171	Heme/Non-Heme Diiron(II) Complexes and O2, CO, and NO Adducts as Reduced and Substrate-Bound Models for the Active Site of Bacterial Nitric Oxide Reductase. Journal of the American Chemical Society, 2005, 127, 3310-3320.	6.6	74
172	Dioxygen Reactivity of Copper and Hemeâ "Copper Complexes Possessing an Imidazoleâ" Phenol Cross-Link. Inorganic Chemistry, 2005, 44, 1238-1247.	1.9	47
173	Geometric and Electronic Structure of the Hemeâ^'Peroxoâ^'Copper Complex [(F8TPP)Felllâ^'(O22-)â^'Cull(TMPA)](ClO4). Journal of the American Chemical Society, 2005, 127, 11969-11978.	6.6	32
174	Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications. Progress in Inorganic Chemistry, 2005, , 47-126.	3.0	272
175	Photoinduced Carbon Monoxide Migration in a Synthetic Hemeâ "Copper Complex. Journal of the American Chemical Society, 2005, 127, 6225-6230.	6.6	14
176	Cumulative Index, Volumes 1-53. Progress in Inorganic Chemistry, 2005, , 587-603.	3.0	0
177	Transition Metal Dithiocarbamates: 1978-2003. Progress in Inorganic Chemistry, 2005, , 71-561.	3.0	450
178	Main Group Dithiocarbamate Complexes. Progress in Inorganic Chemistry, 2005, , 1-69.	3.0	158
179	Synthetic Models for Hemeâ^'Copper Oxidases. Chemical Reviews, 2004, 104, 1077-1134.	23.0	399
180	Oxidant types in copper–dioxygen chemistry: the ligand coordination defines the Cu n -O2 structure and subsequent reactivity. Journal of Biological Inorganic Chemistry, 2004, 9, 669-683.	1.1	314

#	Article	IF	CITATIONS
181	Solvent Effects on the Conversion of Dicopper(II) ν-Î-2:Î-2-Peroxo to Bis-μ-oxo Dicopper(III) Complexes: Direct Probing of the Solvent Interaction. Inorganic Chemistry, 2004, 43, 4115-4117.	1.9	48
182	Mono-, Bi-, and Trinuclear Cull-Cl Containing Products Based on the Tris(2-pyridylmethyl)amine Chelate Derived from Copper(I) Complex Dechlorination Reactions of Chloroform. Inorganic Chemistry, 2004, 43, 5987-5998.	1.9	84
183	Solid-State Properties (Electronic, Magnetic, Optical) of Dithiolene Complex-Based Compounds. Progress in Inorganic Chemistry, 2004, , 399-489.	3.0	62
184	Heme/Cu/O2Reactivity:Â Change in Felllâ^'(O22-)â^'CullUnit Peroxo Binding Geometry Effected by Tridentate Copper Chelation. Journal of the American Chemical Society, 2004, 126, 12716-12717.	6.6	36
185	Cumulative Index, Volumes 1-52. Progress in Inorganic Chemistry, 2004, , 723-738.	3.0	0
186	The Electronic Structure and Spectroscopy of Metallo-Dithiolene Complexes. Progress in Inorganic Chemistry, 2004, , 111-212.	3.0	44
187	Synthesis of Transition Metal Dithiolenes. Progress in Inorganic Chemistry, 2004, , 1-54.	3.0	41
188	Chemical Analogues of the Catalytic Centers of Molybdenum and Tungsten Dithiolene-Containing Enzymes. Progress in Inorganic Chemistry, 2004, , 539-583.	3.0	41
189	Dithiolenes in Biology. Progress in Inorganic Chemistry, 2004, , 491-537.	3.0	24
190	Dithiolenes in More Complex Ligands. Progress in Inorganic Chemistry, 2004, , 585-681.	3.0	17
191	Structures and Structural Trends in Homoleptic Dithiolene Complexes. Progress in Inorganic Chemistry, 2004, , 55-110.	3.0	58
192	Vibrational Spectra of Dithiolene Complexes. Progress in Inorganic Chemistry, 2004, , 213-266.	3.0	16
193	Electrochemical and Chemical Reactivity of Dithiolene Complexes. Progress in Inorganic Chemistry, 2004, , 267-314.	3.0	24
194	Luminescence and Photochemistry of Metal Dithiolene Complexes. Progress in Inorganic Chemistry, 2004, , 315-367.	3.0	40
195	Metal Dithiolene Complexes in Detection: Past, Present, and Future. Progress in Inorganic Chemistry, 2004, , 369-397.	3.0	12
196	Electrocatalytic four-electron reductions of O2 to H2O with cytochrome c oxidase model compounds. Electrochimica Acta, 2003, 48, 4077-4082.	2.6	28
197	An Ironâ^'Peroxo Porphyrin Complex:Â New Synthesis and Reactivity Toward a Cu(II) Complex Giving a Hemeâ^'Peroxoâ^'Copper Adduct. Journal of the American Chemical Society, 2003, 125, 16160-16161.	6.6	53
198	Resonance Raman Investigation of Equatorial Ligand Donor Effects on the Cu2O22+Core in End-On and Side-On μ-Peroxo-Dicopper(II) and Bis-μ-oxo-Dicopper(III) Complexes. Journal of the American Chemical Society, 2003, 125, 5186-5192.	6.6	92

#	Article	IF	CITATIONS
199	Tuning Copperâ-'Dioxygen Reactivity and Exogenous Substrate Oxidations via Alterations in Ligand Electronics. Journal of the American Chemical Society, 2003, 125, 634-635.	6.6	93
200	Synthesis, Characterization, and Laser Flash Photolysis Reactivity of a Carbonmonoxy Heme Complex. Inorganic Chemistry, 2003, 42, 5211-5218.	1.9	36
201	The Rate of O2 and CO Binding to a Copper Complex, Determined by a "Flash-and-Trap―Technique, Exceeds that for Hemes. Journal of the American Chemical Society, 2003, 125, 11866-11871.	6.6	71
202	Synthesis and Characterization of Reduced Heme and Heme/Copper Carbonmonoxy Species. Inorganic Chemistry, 2003, 42, 3016-3025.	1.9	39
203	Distinguishing Rate-Limiting Electron versus H-Atom Transfers in Cu2(O2)-Mediated OxidativeN-Dealkylations: A Application of Inter-versus Intramolecular Kinetic Isotope Effects. Journal of the American Chemical Society, 2003, 125, 12670-12671.	6.6	64
204	Copper(I)â^'Dioxygen Reactivity of [(L)Cul]+(L = Tris(2-pyridylmethyl)amine):Â Kinetic/Thermodynamic and Spectroscopic Studies Concerning the Formation of Cuâ^'O2and Cu2â^'O2Adducts as a Function of Solvent Medium and 4-Pyridyl Ligand Substituent Variations. Inorganic Chemistry, 2003, 42, 1807-1824.	1.9	179
205	Superoxo, Â-peroxo, and Â-oxo complexes from heme/O2 and heme-Cu/O2 reactivity: Copper ligand influences in cytochrome c oxidase models. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3623-3628.	3.3	93
206	Low-Temperature UVâ^'Visible and NMR Spectroscopic Investigations of O2 Binding to (6L)Fell, a Ferrous Heme Bearing Covalently Tethered Axial Pyridine Ligands. Inorganic Chemistry, 2002, 41, 2400-2407.	1.9	29
207	Phenoxyl Radical Complexes. Progress in Inorganic Chemistry, 2002, , 151-216.	3.0	142
208	Gas-Phase Coordination Chemistry of Transition Metal Ions. Progress in Inorganic Chemistry, 2002, , 343-432.	3.0	10
209	Peripherally Functionalized Porphyrazines: Novel Metallomacrocycles with Broad, Untapped Potential. Progress in Inorganic Chemistry, 2002, , 473-590.	3.0	40
210	Structural and Mechanistic Investigations in Asymmetric Copper(I) and Copper(II) Catalyzed Reactions. Progress in Inorganic Chemistry, 2002, , 1-150.	3.0	27
211	Synthesis of Large Pore Zeolites and Molecular Sieves. Progress in Inorganic Chemistry, 2002, , 217-268.	3.0	8
212	Nitric Oxide in Biological Denitrification:  Fe/Cu Metalloenzyme and Metal Complex NOx Redox Chemistry. Chemical Reviews, 2002, 102, 1201-1234.	23.0	435
213	Inorganic Nanoclusters with Fullerene-Like Structure and Nanotubes. Progress in Inorganic Chemistry, 2002, , 269-315.	3.0	26
214	Contrasting Copperâ-'Dioxygen Chemistry Arising from Alike Tridentate Alkyltriamine Copper(I) Complexes. Journal of the American Chemical Society, 2002, 124, 4170-4171.	6.6	90
215	A Bis-Acetonitrile Two-Coordinate Copper(I) Complex:  Synthesis and Characterization of Highly Soluble B(C6F5)4- Salts of [Cu(MeCN)2]+ and [Cu(MeCN)4]+. Inorganic Chemistry, 2002, 41, 2209-2212.	1.9	82
216	High-Performance Pure Calcium Phosphate Bioceramics: The First Weight Bearing, Completely Resorbable Synthetic Bone Replacement Materials. Progress in Inorganic Chemistry, 2002, , 317-342.	3.0	0

#	Article	IF	CITATIONS
217	Combinatorial-Parallel Approaches to Catalyst Discovery and Development. Progress in Inorganic Chemistry, 2002, , 433-471.	3.0	10
218	Dioxygen Reactivity of Mononuclear Heme and Copper Components Yielding A High-Spin Hemeâ^'Peroxoâ^'Cu Complex. Journal of the American Chemical Society, 2001, 123, 6183-6184.	6.6	88
219	Dicopper(I) Complexes of Unsymmetrical Binucleating Ligands and Their Dioxygen Reactivities. Inorganic Chemistry, 2001, 40, 628-635.	1.9	90
220	Dioxygen mediated oxo-transfer to an amine and oxidative N-dealkylation chemistry with a dinuclear copper complex. Chemical Communications, 2001, , 631-632.	2.2	23
221	Copper(I) Complexes, Copper(I)/O2Reactivity, and Copper(II) Complex Adducts, with a Series of Tetradentate Tripyridylalkylamine Tripodal Ligandsâ^‡. Inorganic Chemistry, 2001, 40, 2312-2322.	1.9	177
222	Recognition and Strand Scission at Junctions between Single- and Double-Stranded DNA by a Trinuclear Copper Complex. Journal of the American Chemical Society, 2001, 123, 5588-5589.	6.6	74
223	Reversible Carbon Monoxide Photodissociation from Cu(l) Coordination Compounds. Inorganic Chemistry, 2001, 40, 4514-4515.	1.9	17
224	(F8TPP)Fell/O2Reactivity Studies {F8TPP = Tetrakis(2,6-difluorophenyl)porphyrinate(2â^')}:Â Spectroscopic (UVâ^'Visible and NMR) and Kinetic Study of Solvent-Dependent (Fe/O2= 1:1 or 2:1) Reversible O2-Reduction and Ferryl Formation. Inorganic Chemistry, 2001, 40, 5754-5767.	1.9	121
225	Isocyanide binding to the copper(I) centers of the catalytic core of peptidylglycine monooxygenase (PHMcc). Journal of Biological Inorganic Chemistry, 2001, 6, 567-577.	1.1	20
226	Dioxygen and nitric oxide reactivity of a reduced heme/non-heme diiron(II) complex [(5L)FeIIâcFeIIî—,Cl]+. Using a tethered tetraarylporphyrin for the development of an active site reactivity model for bacterial nitric oxide reductase. Inorganica Chimica Acta, 2000, 297, 362-372.	1,2	23
227	Models of Copper Enzymes and Heme-Copper Oxidases., 2000,, 309-362.		25
228	Dioxygen-Binding Kinetics and Thermodynamics of a Series of Dicopper(I) Complexes with Bis [2-(2-pyridyl)ethyl]amine Tridendate Chelators Forming Side-On Peroxo-Bridged Dicopper(II) Adducts. Inorganic Chemistry, 2000, 39, 5884-5894.	1.9	66
229	Nitric Oxide Reductase fromParacoccus denitrificansContains an Oxo-Bridged Heme/Non-Heme Diiron Center. Journal of the American Chemical Society, 2000, 122, 9344-9345.	6.6	93
230	Synthesis, Structure, and Solution NMR Studies of Cyanideâ^'Copper(II) and Cyanide-Bridged Iron(III)â^'Copper(II) Complexes. Inorganic Chemistry, 1999, 38, 848-858.	1.9	43
231	Dioxygen Reactivity of Fully Reduced [LFeII···CuI]+Complexes Utilizing Tethered Tetraarylporphyrinates:Â Active Site Models for Heme-Copper Oxidases. Inorganic Chemistry, 1999, 38, 2244-2245.	1.9	43
232	A Study of Solid [{Cu(MePY2)}2O2]2+Using Resonance Raman and X-ray Absorption Spectroscopies:Â An Intermediate Cu2O2Core Structure or a Solid Solution?. Journal of the American Chemical Society, 1999, 121, 1870-1878.	6.6	73
233	Dioxygen Reactivity of Reduced Heme and Hemeâ^'Copper Complexes Utilizing Tetraarylporphyrinates Tethered with Both a Pyridyl Axial Ligand andN,N-Bis[2-(2-pyridyl)ethyl]amine Chelate. Inorganic Chemistry, 1999, 38, 4922-4923.	1.9	46
234	Formation and Characterization of a High-Spin Heme-Copper Dioxygen (Peroxo) Complex. Journal of the American Chemical Society, 1999, 121, 9885-9886.	6.6	78

#	Article	IF	Citations
235	Oxo- and Hydroxo-Bridged Heme-Copper Assemblies Formed from Acidâ^'Base or Metalâ^'Dioxygen Chemistry. Inorganic Chemistry, 1999, 38, 3093-3102.	1.9	43
236	Spectroscopic and Theoretical Studies of Oxygenated Dicopper(I) Complexes Containing Hydrocarbon-Linked Bis[2-(2-pyridyl)ethyl]amine Units: Investigation of a Butterfly [Cu2(μ-η2:η2)(O2)]2+Core. Journal of the American Chemical Society, 1999, 121, 1299-1308.	6.6	106
237	Heterobinucleating Ligand-Induced Structural and Chemical Variations in [(L)Felllâ^'Oâ^'Cull]+ξ-Oxo Complexes. Journal of the American Chemical Society, 1998, 120, 9696-9697.	6.6	56
238	Effect of Protonation on Peroxoâ^'Copper Bonding:Â Spectroscopic and Electronic Structure Study of		

#	Article	IF	Citations
253	Dioxygen-copper reactivity and functional modeling of hemocyanins. Reversible binding of O2 and carbon monoxide to dicopper(I) complexes $[Cul2(L)]2+(L=dinucleating ligand)$ and the structure of a bis(carbonyl) adduct, $[Cul2(L)(CO)2]2+$. Inorganic Chemistry, 1992, 31, 1436-1451.	1.9	128
254	Reactions of dioxygen (O2) with mononuclear copper(I) complexes: temperature-dependent formation of peroxo- or oxo- (and dihydroxo-) bridged dicopper(II) complexes. Inorganic Chemistry, 1992, 31, 4322-4332.	1.9	129
255	A dinuclear mixed-valence Cu(I)/Cu(II) complex and its reversible reactions with dioxygen: generation of a superoxodicopper(II) species. Journal of the American Chemical Society, 1992, 114, 7599-7601.	6.6	50
256	Reactivity patterns and comparisons in three classes of synthetic copper-dioxygen {Cu2-O2} complexes: implication for structure and biological relevance. Journal of the American Chemical Society, 1991, 113, 5322-5332.	6.6	139
257	Spectroscopic and theoretical studies of an end-on peroxide-bridged coupled binuclear copper(II) model complex of relevance to the active sites in hemocyanin and tyrosinase. Journal of the American Chemical Society, 1991, 113, 8671-8679.	6.6	148
258	Kinetic, thermodynamic, and spectral characterization of the primary copper-oxygen (Cu-O2) adduct in a reversibly formed and structurally characterized peroxo-dicopper(II) complex. Journal of the American Chemical Society, 1991, 113, 5868-5870.	6.6	92
259	Functional modeling of copper nitrite reductases: reactions of NO2- or nitric oxide with copper(I) complexes. Journal of the American Chemical Society, 1991, 113, 6331-6332.	6.6	77
260	Unsymmetrical dicopper complexes. Direct observation of reversible oxygen binding in a copper monooxygenase model system. Journal of the American Chemical Society, 1991, 113, 698-700.	6.6	69
261	Synthesis and X-ray crystal structure of a trinuclear copper(I) cluster. Inorganica Chimica Acta, 1989, 165, 37-39.	1.2	31
262	Spectroscopic studies of the charge transfer and vibrational features of binuclear copper(II) azide complexes: comparison to the coupled binuclear copper active site in met azide hemocyanin and tyrosinase. Journal of the American Chemical Society, 1989, 111, 5198-5209.	6.6	107
263	X-ray absorption edge spectroscopy of copper(I) complexes. Coordination geometry of copper(I) in the reduced forms of copper proteins and their derivatives with carbon monoxide. Inorganic Chemistry, 1989, 28, 1349-1357.	1.9	79
264	A copper-oxygen (Cu2-O2) complex. Crystal structure and characterization of a reversible dioxygen binding system. Journal of the American Chemical Society, 1988, 110, 3690-3692.	6.6	382
265	Dioxygen-copper reactivity: generation, characterization, and reactivity of a hydroperoxodicopper(II) complex. Journal of the American Chemical Society, 1988, 110, 6769-6780.	6.6	142
266	Dioxygen-copper reactivity: x-ray structure and characterization of an (acylperoxo)dicopper complex. Journal of the American Chemical Society, 1987, 109, 6889-6891.	6.6	58
267	Dioxygen-copper reactivity: EXAFS studies of a peroxo-dicopper(II) complex. Journal of the American Chemical Society, 1987, 109, 1235-1237.	6.6	33
268	Vibrational, electronic, and resonance Raman spectral studies of [Cu2(YXL-O-)O2]+, a copper(II) peroxide model complex of oxyhemocyanin. Journal of the American Chemical Society, 1987, 109, 2624-2630.	6.6	119
269	Dioxygen–copper reactivity: a hydroperoxo–dicopper(II) complex. Journal of the Chemical Society Chemical Communications, 1987, , 599-600.	2.0	33
270	Bioinorganic chemical modeling of dioxygen-activating copper proteins. Journal of Chemical Education, 1985, 62, 983.	1.1	49

#	Article	IF	Citations
271	Dioxygen-copper reactivity. Reversible oxygen and carbon monoxide binding by a new series of binuclear copper(I) complexes. Journal of the American Chemical Society, 1985, 107, 5828-5829.	6.6	49
272	Copper(I)-dioxygen reactivity. 2. Reaction of a three-coordinate copper(I) complex with dioxygen, with evidence for a binuclear oxo-copper(II) species: structural characterization of a parallel-planar dihydroxo-bridged dimer. Inorganic Chemistry, 1984, 23, 519-521.	1.9	57
273	Peroxide coordination to a dicopper(II) center. Dioxygen binding to a structurally characterized phenoxide-bridged binuclear copper(I) complex. Journal of the American Chemical Society, 1984, 106, 3372-3374.	6.6	81
274	Copper-mediated hydroxylation of an arene: model system for the action of copper monooxygenases. Structures of a binuclear copper(I) complex and its oxygenated product. Journal of the American Chemical Society, 1984, 106, 2121-2128.	6.6	323
275	Tetragonal vs. trigonal coordination in copper(II) complexes with tripod ligands: structures and properties of [Cu(C21H24N4)Cl]PF6 and [Cu(C18H18N4)Cl]PF6. Inorganic Chemistry, 1982, 21, 4106-4108.	1.9	249
276	Synthesis and x-ray structural characterization of $Cu(I)$ and $Cu(II)$ derivatives of a new symmetric tripodal ligand $N(CH2CH2-py)3$, (py = 2-pyridyl). Inorganica Chimica Acta, 1982, 64, L219-L220.	1.2	53
277	Redox comparisons of pseudotetrahedral copper(I) complexes containing tripod ligands. Inorganica Chimica Acta, 1982, 65, L39-L40.	1.2	35
278	Activation of O2 by a binuclear copper(I) compound. Hydroxylation of a new xylyl-binucleating ligand to produce a phenoxy-bridged binuclear copper(II) complex; X-ray crystal structure of [Cu2{OC6H3[CH2N(CH2CH2py)2]2-2,6}(OMe)](py = 2-pyridyl). Journal of the Chemical Society Chemical Communications, 1981, , 881.	2.0	74
279	Fundamental Coordination Chemistry, Environmental Chemistry, and Biochemistry of Lead(II). , 0, , $1\text{-}144$.		21
280	Coordination Complexes in Sol–Gel Silica Materials. , 0, , 333-420.		0
281	Chromium in Biology: Toxicology and Nutritional Aspects. , 0, , 145-250.		4
282	Crystal Chemistry of Organically Templated Vanadium Phosphates and Organophosphonates. , 0, , 421-601.		5
283	Cumulative Index, Volumes 1–51. , 0, , 625-640.		0
284	Laterally Nonsymmetric Aza-Cryptands. , 0, , 251-331.		0
285	Chemical Vapor Deposition of Metal-Containing Thin-Film Materials from Organometallic Compounds. Progress in Inorganic Chemistry, 0, , 145-237.	3.0	39
286	Construction of Small Polynuclear Complexes with Trifunctional Phosphine-Based Ligands as Backbones. Progress in Inorganic Chemistry, 0, , 239-329.	3.0	24
287	Metal Chalcogenide Cluster Chemistry. Progress in Inorganic Chemistry, 0, , 637-803.	3.0	156
288	Slow Proton-Transfer Reactions in Organometallic and Bioinorganic Chemistry. Progress in Inorganic Chemistry, $0, 1-65$.	3.0	54

#	Article	IF	CITATIONS
289	Mechanistic and Kinetic Aspects of Transition Metal Oxygen Chemistry. Progress in Inorganic Chemistry, 0, , 267-351.	3.0	24
290	The Chemistry of Metal Complexes with Selenolate and Tellurolate Ligands. Progress in Inorganic Chemistry, 0, , 353-417.	3.0	121
291	Layered Metal Phosphonates as Potential Materials for the Design and Construction of Molecular Photosynthetic Systems. Progress in Inorganic Chemistry, 0, , 143-166.	3.0	20
292	Light-Induced Processes in Molecular Gel Materials. Progress in Inorganic Chemistry, 0, , 167-208.	3.0	6
293	Charge-Transfer Processes in Zeolites: Toward Better Artificial Photosynthetic Models. Progress in Inorganic Chemistry, 0, , 209-271.	3.0	28
294	Selective Recognition of Organic Molecules by Metallohosts. Progress in Inorganic Chemistry, 0, , 1-81.	3.0	30
295	Metallacrowns: A New Class of Molecular Recognition Agents. Progress in Inorganic Chemistry, 0, , 83-177.	3.0	121
296	Assembling Sugars and Metals: Novel Architectures and Reactivities in Transition Metal Chemistry. Progress in Inorganic Chemistry, 0, , 393-429.	3.0	19
297	Oxidation of Hydrazine in Aqueous Solution. Progress in Inorganic Chemistry, 0, , 511-561.	3.0	13
298	Metal Ion Reconstituted Hybrid Hemoglobins. Progress in Inorganic Chemistry, 0, , 563-684.	3.0	4
299	Organometallic Fluorides of the Main Group Metals Containing the C-M-F Fragment. Progress in Inorganic Chemistry, 0, , 351-455.	3.0	20
300	Coordination Complex Impregnated Molecular Sieves-Synthesis, Characterization, Reactivity, and Catalysis. Progress in Inorganic Chemistry, 0, , 457-504.	3.0	6
301	Advances in Metal Boryl and Metal-Mediated B-X Activation Chemistry. Progress in Inorganic Chemistry, 0, , 505-567.	3.0	38
302	Cumulative Index, Volumes 1-46. Progress in Inorganic Chemistry, 0, , 475-488.	3.0	0
303	Cumulative Index, Volumes 1-44. Progress in Inorganic Chemistry, 0, , 409-421.	3.0	0
304	Cumulative Index, Volumes 1-42. Progress in Inorganic Chemistry, 0, , 595-606.	3.0	0
305	Cumulative Index, Volumes 1-48. Progress in Inorganic Chemistry, 0, , 589-603.	3.0	0
306	Cumulative Index, Volumes 1-41. Progress in Inorganic Chemistry, 0, , 837-848.	3.0	0

KENNETH D KARLIN

#	Article	IF	CITATIONS
307	Cumulative Index, Volumes 1-47. Progress in Inorganic Chemistry, 0, , 965-978.	3.0	0
308	Cumulative Index, Volumes 1-45. Progress in Inorganic Chemistry, 0, , 497-510.	3.0	0
309	Cumulative Index, Volumes 1-43. Progress in Inorganic Chemistry, 0, , 609-621.	3.0	0
310	Cumulative Index, Volumes 1-49. Progress in Inorganic Chemistry, 0, , 687-700.	3.0	0
311	Cumulative Index, Volumes 1-57. Progress in Inorganic Chemistry, 0, , 593-615.	3.0	0