Yida Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5112680/publications.pdf

Version: 2024-02-01

430754 454834 1,201 42 18 citations h-index papers

g-index 44 44 44 2039 all docs docs citations times ranked citing authors

30

#	Article	IF	CITATIONS
1	Contact Resistance Reduction of Low Temperature Atomic Layer Deposition ZnO Thin Film Transistor Using Ar Plasma Surface Treatment. IEEE Electron Device Letters, 2022, 43, 890-893.	2.2	10
2	Performance Optimization of Atomic Layer Deposited HfO _x Memristor by Annealing With Back-End-of-Line Compatibility. IEEE Electron Device Letters, 2022, 43, 1141-1144.	2.2	9
3	Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nature Communications, 2022, 13, .	5.8	60
4	Field-Effect Mobility Enhancement in Low Temperature ALD ZnO Thin-film Transistors via Contact Defects Engineering Suitable for BEOL Integration. , 2022, , .		0
5	Transfer Learning-Based Artificial Intelligence-Integrated Physical Modeling to Enable Failure Analysis for 3 Nanometer and Smaller Silicon-Based CMOS Transistors. ACS Applied Nano Materials, 2021, 4, 6903-6915.	2.4	25
6	A 70-14W 1.35-mm ² Wireless Sensor With 32 Channels of Resistive and Capacitive Sensors and Edge-Encoded PWM UWB Transceiver. IEEE Journal of Solid-State Circuits, 2021, 56, 2065-2076.	3.5	6
7	Hybrid-Flexible Bimodal Sensing Wearable Glove System for Complex Hand Gesture Recognition. ACS Sensors, 2021, 6, 4156-4166.	4.0	26
8	A highly sensitive graphene oxide based label-free capacitive aptasensor for vanillin detection. Materials and Design, 2020, 186, 108208.	3.3	27
9	A $7 \times 7 \times 2$ mmÂ 3 8.6-Î 1 /4W 500-kb/s Transmitter With Robust Injection-Locking-Based Frequency-to-Amplitude Conversion Receiver Targeting for Implantable Applications. IEEE Journal of Solid-State Circuits, 2020, , 1-11.	3.5	5
10	An 8.2-\$mu\$ W 0.14-mm ² 16-Channel CDMA-Like Capacitance-to-Digital Converter. IEEE Journal of Solid-State Circuits, 2020, 55, 1361-1373.	3.5	10
11	A Wireless Multi-Channel Capacitive Sensor System for Efficient Glove-Based Gesture Recognition With AI at the Edge. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1624-1628.	2.2	29
12	23.2 A $70 {\hat A} \mu W$ $1.19 mm < sup>2 Wireless Sensor with 32 Channels of Resistive and Capacitive Sensors and Edge-Encoded PWM UWB Transceiver. , 2020, , .$		4
13	Fledge: Flexible Edge Platforms Enabled by In-memory Computing. , 2020, , .		2
14	Aerosol Jet Printed WSe ₂ Crossbar Architecture Device on Kapton With Dual Functionality as Resistive Memory and Photosensor for Flexible System Integration. IEEE Sensors Journal, 2020, 20, 4653-4659.	2.4	15
15	Low Subthreshold Swing and High Mobility Amorphous Indium–Gallium–Zinc-Oxide Thin-Film Transistor With Thin HfO ₂ Gate Dielectric and Excellent Uniformity. IEEE Electron Device Letters, 2020, 41, 856-859.	2.2	48
16	Seal Integrity Testing Utilizing Non-Destructive Capacitive Sensing for Product Packaging Assurance. , 2020, , .		2
17	A $7\tilde{A}$ — $7\tilde{A}$ — 2 mm $<$ sup $>3<$ /sup $>8.6-\hat{l}\frac{1}{4}$ 500-kb/s Transmitter with Robust Injection-Locking Based Frequency-to-Amplitude Conversion Receiver Targeting for Implantable Applications. , 2019, , .		1
18	First Demonstration of a Fully-Printed Mos2Rram on Flexible Substrate with Ultra-Low Switching Voltage and its Application as Electronic Synapse. , 2019, , .		8

#	Article	IF	Citations
19	Liquid-metal-elastomer foam for moldable multi-functional triboelectric energy harvesting and force sensing. Nano Energy, 2019, 64, 103912.	8.2	37
20	All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nature Communications, 2019, 10, 5201.	5.8	107
21	A Fully Printed Flexible MoS ₂ Memristive Artificial Synapse with Femtojoule Switching Energy. Advanced Electronic Materials, 2019, 5, 1900740.	2.6	123
22	Aerosol Jet Printed WSe < sub > 2 < /sub > Based RRAM on Kapton Suitable for Flexible Monolithic Memory Integration. , 2019, , .		6
23	Design of Artificial Spiking Neuron with SiO2 Memristive Synapse to Demonstrate Neuron-Level Spike Timing Dependent Plasticity. , 2019, , .		0
24	Impact of Ti Interfacial Layer on Resistive Switching Characteristics at sub-µA Current Level in SiO _x -Based Flexible Cross-Point RRAM. , 2019, , .		2
25	A Soft Polydimethylsiloxane Liquid Metal Interdigitated Capacitor Sensor and Its Integration in a Flexible Hybrid System for On-Body Respiratory Sensing. Materials, 2019, 12, 1458.	1.3	28
26	A flexible InGaAs nanomembrane PhotoFET with tunable responsivities in near- and short-wave IR region for lightweight imaging applications. APL Materials, 2019, 7, .	2.2	13
27	Highly Scaled Strained Silicon-On-Insulator Technology for the 5G Era: Impact of Geometry and Annealing on Strain Retention and Device Performance of nMOSFETs. IEEE Transactions on Electron Devices, 2019, 66, 2068-2074.	1.6	4
28	A Stretchableâ€Hybrid Lowâ€Power Monolithic ECG Patch with Microfluidic Liquidâ€Metal Interconnects and Stretchable Carbonâ€Black Nanocomposite Electrodes for Wearable Heart Monitoring. Advanced Electronic Materials, 2019, 5, 1800463.	2.6	44
29	Design and Study of an Artificial Spiking Neuron Enabled by Low-Voltage SiOx-based ReRAM. , 2019, , .		0
30	A flexible liquid-metal alloy bandpass filter. International Journal of RF and Microwave Computer-Aided Engineering, 2018, 28, e21265.	0.8	8
31	Bendable and Stretchable Microfluidic Liquid Metal-Based Filter. IEEE Microwave and Wireless Components Letters, 2018, 28, 203-205.	2.0	17
32	A Near- & Short-Wave IR Tunable In GaAs Nanomembrane PhotoFET on Flexible Substrate for Lightweight and Wide-Angle Imaging Applications. , 2018, , .		1
33	Raman analysis of gold on WSe ₂ single crystal film. Materials Research Express, 2015, 2, 065009.	0.8	20
34	Tuning the threshold voltage of MoS ₂ field-effect transistors via surface treatment. Nanoscale, 2015, 7, 10823-10831.	2.8	71
35	Low Resistance Metal Contacts to MoS ₂ Devices with Nickel-Etched-Graphene Electrodes. ACS Nano, 2015, 9, 869-877.	7.3	184
36	Suppression of Void Formation in Si _{0.5} Ge _{0.5} Alloy Nanowire during Ni Germanosilicidation. Advanced Engineering Materials, 2014, 16, 1032-1037.	1.6	0

#	Article	lF	CITATIONS
37	Effect of Electrical Contact Resistance in a Silicon Nanowire Thermoelectric Cooler and a Design Guideline for On-Chip Cooling Applications. Journal of Electronic Materials, 2013, 42, 1476-1481.	1.0	9
38	Vertical Silicon Nanowire Platform for Low Power Electronics and Clean Energy Applications. Journal of Nanotechnology, 2012, 2012, 1-21.	1.5	35
39	Top-Down Silicon Nanowire-Based Thermoelectric Generator: Design and Characterization. Journal of Electronic Materials, 2012, 41, 989-992.	1.0	30
40	Improved Vertical Silicon Nanowire Based Thermoelectric Power Generator With Polyimide Filling. IEEE Electron Device Letters, 2012, 33, 715-717.	2.2	60
41	Chip-Level Thermoelectric Power Generators Based on High-Density Silicon Nanowire Array Prepared With Top-Down CMOS Technology. IEEE Electron Device Letters, 2011, 32, 674-676.	2.2	105
42	Silicon nanowires thermoelectric devices. , 2010, , .		2