Xiang H - F Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5112335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genes that mediate breast cancer metastasis to the brain. Nature, 2009, 459, 1005-1009.	13.7	1,587
2	Tumor Self-Seeding by Circulating Cancer Cells. Cell, 2009, 139, 1315-1326.	13.5	1,182
3	TGFβ Primes Breast Tumors for Lung Metastasis Seeding through Angiopoietin-like 4. Cell, 2008, 133, 66-77.	13.5	852
4	Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nature Medicine, 2011, 17, 867-874.	15.2	740
5	Serpins Promote Cancer Cell Survival and Vascular Co-Option in Brain Metastasis. Cell, 2014, 156, 1002-1016.	13.5	672
6	Latent Bone Metastasis in Breast Cancer Tied to Src-Dependent Survival Signals. Cancer Cell, 2009, 16, 67-78.	7.7	609
7	Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature, 2015, 525, 389-393.	13.7	600
8	Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature, 2017, 544, 250-254.	13.7	555
9	Macrophage Binding to Receptor VCAM-1 Transmits Survival Signals in Breast Cancer Cells that Invade the Lungs. Cancer Cell, 2011, 20, 538-549.	7.7	493
10	Tumor Exosomal RNAs Promote Lung Pre-metastatic Niche Formation by Activating Alveolar Epithelial TLR3 to Recruit Neutrophils. Cancer Cell, 2016, 30, 243-256.	7.7	478
11	The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature, 2015, 525, 384-388.	13.7	392
12	Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma. Cell, 2013, 154, 1060-1073.	13.5	359
13	The Osteogenic Niche Promotes Early-Stage Bone Colonization of Disseminated Breast Cancer Cells. Cancer Cell, 2015, 27, 193-210.	7.7	308
14	Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nature Cell Biology, 2019, 21, 1113-1126.	4.6	202
15	Metastasis Organotropism: Redefining the Congenial Soil. Developmental Cell, 2019, 49, 375-391.	3.1	202
16	Metastasis Dormancy in Estrogen Receptor–Positive Breast Cancer. Clinical Cancer Research, 2013, 19, 6389-6397.	3.2	199
17	Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nature Cell Biology, 2016, 18, 632-644.	4.6	174
18	Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting lgG. Nature Medicine, 2019, 25, 312-322.	15.2	174

XIANG H -F ZHANG

#	Article	IF	CITATIONS
19	Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature, 2018, 556, 249-254.	13.7	164
20	14-3-3ζ Turns TGF-β's Function from Tumor Suppressor to Metastasis Promoter in Breast Cancer by Contextual Changes of Smad Partners from p53 to Gli2. Cancer Cell, 2015, 27, 177-192.	7.7	158
21	Adult Connective Tissue-Resident Mast Cells Originate from Late Erythro-Myeloid Progenitors. Immunity, 2018, 49, 640-653.e5.	6.6	139
22	The bone microenvironment invigorates metastatic seeds for further dissemination. Cell, 2021, 184, 2471-2486.e20.	13.5	131
23	Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nature Immunology, 2020, 21, 1444-1455.	7.0	109
24	Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer. Cell, 2021, 184, 384-403.e21.	13.5	94
25	The Osteogenic Niche Is a Calcium Reservoir of Bone Micrometastases and Confers Unexpected Therapeutic Vulnerability. Cancer Cell, 2018, 34, 823-839.e7.	7.7	93
26	Notch Signaling as a Regulator of the Tumor Immune Response: To Target or Not To Target?. Frontiers in Immunology, 2018, 9, 1649.	2.2	85
27	Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nature Cancer, 2020, 1, 709-722.	5.7	77
28	Bone Metastasis: Find Your Niche and Fit in. Trends in Cancer, 2019, 5, 95-110.	3.8	65
29	The bone microenvironment increases phenotypic plasticity of ER+ breast cancer cells. Developmental Cell, 2021, 56, 1100-1117.e9.	3.1	63
30	Neurofibromin Is an Estrogen Receptor-α Transcriptional Co-repressor in Breast Cancer. Cancer Cell, 2020, 37, 387-402.e7.	7.7	59
31	One microenvironment does not fit all: heterogeneity beyond cancer cells. Cancer and Metastasis Reviews, 2016, 35, 601-629.	2.7	58
32	HER2/EGFR–AKT Signaling Switches TGFβ from Inhibiting Cell Proliferation to Promoting Cell Migration in Breast Cancer. Cancer Research, 2018, 78, 6073-6085.	0.4	58
33	Targeting Brain-Adaptive Cancer Stem Cells Prohibits Brain Metastatic Colonization of Triple-Negative Breast Cancer. Cancer Research, 2018, 78, 2052-2064.	0.4	56
34	Upregulation of EGFR signaling is correlated with tumor stroma remodeling and tumor recurrence in FGFR1-driven breast cancer. Breast Cancer Research, 2015, 17, 141.	2.2	55
35	Ash1l and Inc-Smad3 coordinate Smad3 locus accessibility to modulate iTreg polarization and T cell autoimmunity. Nature Communications, 2017, 8, 15818.	5.8	53
36	Tumor-Associated Neutrophils and Macrophages—Heterogenous but Not Chaotic. Frontiers in Immunology, 2020, 11, 553967.	2.2	53

XIANG H -F ZHANG

#	Article	IF	CITATIONS
37	Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. Breast Cancer Research, 2015, 17, 3.	2.2	48
38	Interleukin-17 Could Promote Breast Cancer Progression at Several Stages of the Disease. Mediators of Inflammation, 2015, 2015, 1-6.	1.4	47
39	Evolving cancer–niche interactions and therapeutic targets during bone metastasis. Nature Reviews Cancer, 2022, 22, 85-101.	12.8	47
40	Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation. Cell Reports, 2015, 12, 511-524.	2.9	39
41	UDP-glucose 6-dehydrogenase regulates hyaluronic acid production and promotes breast cancer progression. Oncogene, 2020, 39, 3089-3101.	2.6	37
42	Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nature Communications, 2017, 8, 15045.	5.8	34
43	EMT in Metastasis: Finding the Right Balance. Developmental Cell, 2018, 45, 663-665.	3.1	33
44	Protein quality control through endoplasmic reticulum-associated degradation maintains haematopoietic stem cell identity and niche interactions. Nature Cell Biology, 2020, 22, 1162-1169.	4.6	32
45	Multi-omic molecular profiling reveals potentially targetable abnormalities shared across multiple histologies of brain metastasis. Acta Neuropathologica, 2021, 141, 303-321.	3.9	30
46	RSPO2 and RANKL signal through LGR4 to regulate osteoclastic premetastatic niche formation and bone metastasis. Journal of Clinical Investigation, 2022, 132, .	3.9	30
47	Intra-iliac Artery Injection for Efficient and Selective Modeling of Microscopic Bone Metastasis. Journal of Visualized Experiments, 2016, , .	0.2	29
48	The Oncogenic STP Axis Promotes Triple-Negative Breast Cancer via Degradation of the REST Tumor Suppressor. Cell Reports, 2014, 9, 1318-1332.	2.9	24
49	Transcriptional repression of SIRT3 potentiates mitochondrial aconitase activation to drive aggressive prostate cancer to the bone. Cancer Research, 2021, 81, canres.1708.2020.	0.4	24
50	FGFR1-Activated Translation of WNT Pathway Components with Structured 5′ UTRs Is Vulnerable to Inhibition of EIF4A-Dependent Translation Initiation. Cancer Research, 2018, 78, 4229-4240.	0.4	22
51	Hormonal modulation of ESR1 mutant metastasis. Oncogene, 2021, 40, 997-1011.	2.6	22
52	Chemotherapy Coupled to Macrophage Inhibition Induces T-cell and B-cell Infiltration and Durable Regression in Triple-Negative Breast Cancer. Cancer Research, 2022, 82, 2281-2297.	0.4	22
53	Repurposing Antiestrogens for Tumor Immunotherapy. Cancer Discovery, 2017, 7, 17-19.	7.7	19
54	Replication stress response defects are associated with response to immune checkpoint blockade in nonhypermutated cancers. Science Translational Medicine, 2021, 13, eabe6201	5.8	19

XIANG H -F ZHANG

#	Article	IF	CITATIONS
55	Harnessing the power of antibodies to fight bone metastasis. Science Advances, 2021, 7, .	4.7	18
56	Exploiting bone niches: progression of disseminated tumor cells to metastasis. Journal of Clinical Investigation, 2021, 131, .	3.9	17
57	Unique cellular protrusions mediate breast cancer cell migration by tethering to osteogenic cells. Npj Breast Cancer, 2020, 6, 42.	2.3	14
58	Single-Cell Analysis Unveils the Role of the Tumor Immune Microenvironment and Notch Signaling in Dormant Minimal Residual Disease. Cancer Research, 2022, 82, 885-899.	0.4	14
59	Senesce to Survive: YAP-Mediated Dormancy Escapes EGFR/MEK Inhibition. Cancer Cell, 2020, 37, 1-2.	7.7	12
60	Pathogen-expanded CD11b+ invariant NKT cells feedback inhibit T cell proliferation via membrane-bound TGF-β1. Journal of Autoimmunity, 2015, 58, 21-35.	3.0	11
61	A Wnt-Independent LGR4–EGFR Signaling Axis in Cancer Metastasis. Cancer Research, 2021, 81, 4441-4454.	0.4	11
62	Bone Tropism in Cancer Metastases. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036848.	2.9	8
63	Tumor Suppressor PLK2 May Serve as a Biomarker in Triple-Negative Breast Cancer for Improved Response to PLK1 Therapeutics. Cancer Research Communications, 2021, 1, 178-193.	0.7	8
64	Inflammation-induced CD69+ Kupffer cell feedback inhibits T cell proliferation via membrane-bound TGF-β1. Science China Life Sciences, 2016, 59, 1259-1269.	2.3	7
65	Retrieval of Disseminated Tumor Cells Colonizing the Bone in Murine Breast Cancer Metastasis Models. Journal of Mammary Gland Biology and Neoplasia, 2015, 20, 103-108.	1.0	4
66	Bone-Specific Enhancement of Antibody Therapy for Breast Cancer Metastasis to Bone. ACS Central Science, 2022, 8, 312-321.	5.3	4
67	Endoplasmic Reticulum Stress in Bone Metastases. Frontiers in Oncology, 2020, 10, 1100.	1.3	3
68	Fatal attraction: TICs and MDSCs. Cell Cycle, 2016, 15, 2545-2546.	1.3	2
69	Mapping bone marrow niches of disseminated tumor cells. Science China Life Sciences, 2017, 60, 1125-1132.	2.3	2
70	EMT process in bone metastasis. , 2022, , 359-370.		1
71	Bone-in-culture Array to Model Bone Metastasis in ex vivo Condition. Bio-protocol, 2020, 10, e3495.	0.2	0
72	Bone as a New Milieu for Disseminated Tumor Cells: An Overview of Bone Metastasis. , 2020, , 78-95.		0