Matthew E Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5112163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PSP/IS⊙IS Observation of a Solar Energetic Particle Event Associated with a Streamer Blowout Coronal Mass Ejection during Encounter 6. Astrophysical Journal, 2022, 925, 212.	4.5	3
2	Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7. Astrophysical Journal, 2022, 927, 62.	4.5	3
3	The Structure of the Global Heliosphere as Seen by In-Situ Ions from the Voyagers and Remotely Sensed ENAs from Cassini. Space Science Reviews, 2022, 218, 1.	8.1	21
4	Solar Wind Model Supported by Parker Solar Probe Observations During Faint Venusian Auroral Emission. Astrophysical Journal, 2022, 929, 45.	4.5	0
5	Anomalous Cosmic Rays and Heliospheric Energetic Particles. Space Science Reviews, 2022, 218, 22.	8.1	16
6	First Measurements of Jovian Electrons by Parker Solar Probe/IS⊙IS within 0.5 au of the Sun. Astrophysical Journal, 2022, 933, 171.	4.5	2
7	Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREOâ€A. Geophysical Research Letters, 2021, 48, e2020GL091376.	4.0	16
8	Energetic particle behavior in near-Sun magnetic field switchbacks from PSP. Astronomy and Astrophysics, 2021, 650, L4.	5.1	12
9	Parker Solar Probe observations of He/H abundance variations in SEP events inside 0.5 au. Astronomy and Astrophysics, 2021, 650, A23.	5.1	13
10	A living catalog of stream interaction regions in the Parker Solar Probe era. Astronomy and Astrophysics, 2021, 650, A25.	5.1	17
11	Magnetic field line random walk and solar energetic particle path lengths. Astronomy and Astrophysics, 2021, 650, A26.	5.1	20
12	A new view of energetic particles from stream interaction regions observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A24.	5.1	15
13	Time evolution of stream interaction region energetic particle spectra in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, L5.	5.1	14
14	lons Measured by Voyager 1 Outside the Heliopause to ~28 au and Implications Thereof. Astrophysical Journal, 2021, 917, 42.	4.5	15
15	Parker Solar Probe observations of helical structures as boundaries for energetic particles. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2114-2122.	4.4	10
16	Energetic Electron Observations by Parker Solar Probe/IS⊙IS during the First Widespread SEP Event of Solar Cycle 25 on 2020 November 29. Astrophysical Journal, 2021, 919, 119.	4.5	17
17	Energetic Particles Associated with a Coronal Mass Ejection Shock Interacting with a Convected Magnetic Structure. Astrophysical Journal, 2021, 921, 102.	4.5	10
18	Comparative Analysis of the 2020 November 29 Solar Energetic Particle Event Observed by Parker Solar Probe. Astrophysical Journal, 2021, 920, 123.	4.5	12

#	Article	IF	CITATIONS
19	Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 61.	7.7	25
20	Convection in the Magnetosphere of Saturn During the Cassini Mission Derived From MIMI INCA and CHEMS Measurements. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027534.	2.4	11
21	Small, Low-energy, Dispersive Solar Energetic Particle Events Observed by <i>Parker Solar Probe</i> . Astrophysical Journal, Supplement Series, 2020, 246, 65.	7.7	23
22	Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au. Astrophysical Journal, Supplement Series, 2020, 246, 36.	7.7	43
23	Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	12.6	64
24	The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	12.6	76
25	Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at â^1⁄40.25 au. Astrophysical Journal, Supplement Series, 2020, 246, 29.	7.7	35
26	Energetic Particle Observations from the Parker Solar Probe Using Combined Energy Spectra from the IS⊙IS Instrument Suite. Astrophysical Journal, Supplement Series, 2020, 246, 41.	7.7	17
27	³ He-rich Solar Energetic Particle Observations at the Parker Solar Probe and near Earth. Astrophysical Journal, Supplement Series, 2020, 246, 42.	7.7	27
28	CME-associated Energetic Ions at 0.23 au: Consideration of the Auroral Pressure Cooker Mechanism Operating in the Low Corona as a Possible Energization Process. Astrophysical Journal, Supplement Series, 2020, 246, 59.	7.7	21
29	Energetic Particle Increases Associated with Stream Interaction Regions. Astrophysical Journal, Supplement Series, 2020, 246, 20.	7.7	31
30	The Near-Sun Dust Environment: Initial Observations from Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 27.	7.7	47
31	Seed Population Preconditioning and Acceleration Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 33.	7.7	21
32	Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 35.	7.7	27
33	Properties of Suprathermal-through-energetic He Ions Associated with Stream Interaction Regions Observed over the Parker Solar Probe's First Two Orbits. Astrophysical Journal, Supplement Series, 2020, 246, 56.	7.7	29
34	Small Electron Events Observed by Parker Solar Probe/IS⊙IS during Encounter 2. Astrophysical Journal, 2020, 902, 20.	4.5	9
35	Influence of Solar Disturbances on Galactic Cosmic Rays in the Solar Wind, Heliosheath, and Local Interstellar Medium: Advanced Composition Explorer, New Horizons, and Voyager Observations. Astrophysical Journal, 2020, 905, 69.	4.5	15
36	Suprathermal lons in the Outer Heliosphere. Astrophysical Journal, 2019, 876, 46.	4.5	15

#	Article	IF	CITATIONS
37	Energetic charged particle measurements from Voyager 2 at the heliopause and beyond. Nature Astronomy, 2019, 3, 997-1006.	10.1	59
38	Initial results from the New Horizons exploration of 2014 MU ₆₉ , a small Kuiper Belt object. Science, 2019, 364, .	12.6	113
39	Pluto's Interaction With Energetic Heliospheric Ions. Journal of Geophysical Research: Space Physics, 2019, 124, 7413-7424.	2.4	4
40	Probing the energetic particle environment near the Sun. Nature, 2019, 576, 223-227.	27.8	103
41	A radiation belt of energetic protons located between Saturn and its rings. Science, 2018, 362, .	12.6	27
42	The Mushroom: A halfâ€sky energetic ion and electron detector. Journal of Geophysical Research: Space Physics, 2017, 122, 1513-1530.	2.4	40
43	The puzzling detection of x-rays from Pluto by Chandra. Icarus, 2017, 287, 103-109.	2.5	19
44	The "Puck―energetic charged particle detector: Design, heritage, and advancements. Journal of Geophysical Research: Space Physics, 2016, 121, 7900-7913.	2.4	15
45	The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature, 2016, 539, 65-68.	27.8	44
46	VOYAGER OBSERVATIONS OF MAGNETIC SECTORS AND HELIOSPHERIC CURRENT SHEET CROSSINGS IN THE OUTER HELIOSPHERE. Astrophysical Journal, 2016, 831, 115.	4.5	8
47	Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation. Space Science Reviews, 2016, 204, 187-256.	8.1	139
48	The atmosphere of Pluto as observed by New Horizons. Science, 2016, 351, aad8866.	12.6	201
49	Pluto's interaction with its space environment: Solar wind, energetic particles, and dust. Science, 2016, 351, aad9045.	12.6	60
50	The geology of Pluto and Charon through the eyes of New Horizons. Science, 2016, 351, 1284-1293.	12.6	219
51	Recent Particle Measurements from Voyagers 1 and 2. Journal of Physics: Conference Series, 2015, 577, 012006.	0.4	26
52	Statistics of Langmuir wave amplitudes observed inside Saturn's foreshock by the Cassini spacecraft. Journal of Geophysical Research: Space Physics, 2015, 120, 2531-2542.	2.4	9
53	Solar wind at 33 AU: Setting bounds on the Pluto interaction for New Horizons. Journal of Geophysical Research E: Planets, 2015, 120, 1497-1511.	3.6	19
54	The Pluto system: Initial results from its exploration by New Horizons. Science, 2015, 350, aad1815.	12.6	407

#	Article	IF	CITATIONS
55	DEPENDENCE OF ENERGETIC ION AND ELECTRON INTENSITIES ON PROXIMITY TO THE MAGNETICALLY SECTORED HELIOSHEATH: <i>VOYAGER 1</i> AND <i>2</i> OBSERVATIONS. Astrophysical Journal, 2014, 781, 94.	4.5	19
56	Plasma and energetic particle observations in Jupiter's deep tail near the magnetopause. Journal of Geophysical Research: Space Physics, 2014, 119, 6432-6444.	2.4	4
57	Search for the Exit: Voyager 1 at Heliosphere's Border with the Galaxy. Science, 2013, 341, 144-147.	12.6	186
58	No meridional plasma flow in the heliosheath transition region. Nature, 2012, 489, 124-127.	27.8	70
59	Zero outward flow velocity for plasma in a heliosheath transition layer. Nature, 2011, 474, 359-361.	27.8	120
60	Modelling anomalous cosmic ray oxygen in the heliosheath. Astronomy and Astrophysics, 2010, 522, A35.	5.1	34
61	Interim Report on the Power Law Index of Interplanetary Suprathermal Ion Spectra. AIP Conference Proceedings, 2010, , .	0.4	3
62	Variations of Low-energy Ion Distributions Measured in the Heliosheath. , 2010, , .		15
63	INTERPLANETARY SUPRATHERMAL He ⁺ AND He ⁺⁺ OBSERVATIONS DURING QUIET PERIODS FROM 1 TO 9 AU AND IMPLICATIONS FOR PARTICLE ACCELERATION. Astrophysical Journal, 2009, 699, L26-L30.	4.5	19
64	Termination Shock and Heliosheath: Energetic Ion Variations Measured at Voyagers 1 and 2. , 2009, , .		3
65	Composition of Interstellar Neutrals and the Origin ofÂAnomalous Cosmic Rays. Space Science Reviews, 2009, 143, 163-175.	8.1	21
66	Energetic particle evidence for magnetic filaments in Jupiter's magnetotail. Journal of Geophysical Research, 2009, 114, .	3.3	18
67	Composition of energetic particles in the Jovian magnetotail. Journal of Geophysical Research, 2009, 114, .	3.3	23
68	The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission. , 2009, , 315-385.		1
69	Composition of Interstellar Neutrals and the Origin ofÂAnomalous Cosmic Rays. Space Sciences Series of ISSI, 2009, , 163-175.	0.0	1
70	Mediation of the solar wind termination shock by non-thermal ions. Nature, 2008, 454, 67-70.	27.8	221
71	The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission. Space Science Reviews, 2008, 140, 315-385.	8.1	53
72	Particle Acceleration at the Termination Shock: Voyager 1 and 2 Observations. AIP Conference Proceedings, 2008, .	0.4	8

#	Article	IF	CITATIONS
73	Formation of Power Law Tail with Spectral Index-5 Inside and Beyond the Heliosphere. AIP Conference Proceedings, 2008, , .	0.4	29
74	Foreshock, termination shock, and heliosheath: Voyager 1/2 observations of structure and turbulence. AIP Conference Proceedings, 2007, , .	0.4	3
75	Energetic Particles in the Jovian Magnetotail. Science, 2007, 318, 220-222.	12.6	50
76	Proton irradiation environment of solar system objects in the heliospheric boundary regions. AIP Conference Proceedings, 2006, , .	0.4	3
77	Low-energy ions near the termination shock. AIP Conference Proceedings, 2006, , .	0.4	18
78	Heliosheath particles, anomalous cosmic rays and a possible "third source―of energetic ions. AIP Conference Proceedings, 2006, , .	0.4	6
79	Voyager 1 in the Foreshock, Termination Shock, and Heliosheath. Science, 2005, 309, 2020-2024.	12.6	405
80	Energetic Particle Observations Near the Termination Shock. AIP Conference Proceedings, 2004, , .	0.4	2
81	Investigating the Heliosphere with Low-energy Anomalous Cosmic Rays. AIP Conference Proceedings, 2004, , .	0.4	1
82	Voyager 1 exited the solar wind at a distance of â^¼85 au from the Sun. Nature, 2003, 426, 45-48.	27.8	170
83	Anomalous cosmic ray intensity variations in the inner and outer heliosphere during the solar cycle 22 recovery phase (1991–1999). Journal of Geophysical Research, 2003, 108, .	3.3	7
84	Evolution of Anomalous Cosmic-Ray Oxygen and Helium Energy Spectra during the Solar Cycle 22 Recovery Phase in the Outer Heliosphere. Astrophysical Journal, 2002, 572, L169-L172.	4.5	12
85	Periodicity of 151 days in outer heliospheric anomalous cosmic ray fluxes. Journal of Geophysical Research, 2001, 106, 8315-8322.	3.3	21