
Michael P Brenner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5111822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlation Tracking: Using simulations to interpolate highly correlated particle tracks. Physical Review E, 2022, 105, 044608.	0.8	Ο
2	Revealing lineage-related signals in single-cell gene expression using random matrix theory. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
3	Designing self-assembling kinetics with differentiable statistical physics models. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
4	Revealing the state space of turbulence using machine learning. Physical Review Fluids, 2021, 6, .	1.0	16
5	Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	354
6	Learned discretizations for passive scalar advection in a two-dimensional turbulent flow. Physical Review Fluids, 2021, 6, .	1.0	26
7	Cascades and reconnection in interacting vortex filaments. Physical Review Fluids, 2021, 6, .	1.0	10
8	Microscopic origins of the crystallographically preferred growth in evaporation-induced colloidal crystals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
9	Programming cell growth into different cluster shapes using diffusible signals. PLoS Computational Biology, 2021, 17, e1009576.	1.5	4
10	Phase separation in fluids with many interacting components. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
11	Identifying Cell Type-Specific Chemokine Correlates with Hierarchical Signal Extraction from Single-Cell Transcriptomes. , 2021, , .		0
12	Self-assembly–based posttranslational protein oscillators. Science Advances, 2020, 6, .	4.7	2
13	Turbulence generation through an iterative cascade of the elliptical instability. Science Advances, 2020, 6, eaaz2717.	4.7	43
14	Tracing cell trajectories in a biofilm. Science, 2020, 369, 30-31.	6.0	3
15	Learning data-driven discretizations for partial differential equations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15344-15349.	3.3	247
16	A Polymer Physics Framework for the Entropy of Arbitrary Pseudoknots. Biophysical Journal, 2019, 117, 520-532.	0.2	12
17	Using attribution to decode binding mechanism in neural network models for chemistry. Proceedings of the United States of America, 2019, 116, 11624-11629.	3.3	53
18	Magnetic handshake materials as a scale-invariant platform for programmed self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24402-24407.	3.3	28

MICHAEL P BRENNER

#	Article	IF	CITATIONS
19	Robust Increase in Supply by Vessel Dilation in Globally Coupled Microvasculature. Physical Review Letters, 2019, 123, 228103.	2.9	13
20	Collagen-Inspired Self-Assembly of Twisted Filaments. Physical Review Letters, 2019, 123, 238102.	2.9	3
21	Twirling, whirling, and tensioning: Plectoneme formation and suppression in flexible filaments. Physical Review Research, 2019, 1, .	1.3	3
22	Physical and geometric constraints shape the labyrinth-like nasal cavity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2936-2941.	3.3	15
23	Controlling Polyelectrolyte Adsorption onto Carbon Nanotubes by Tuning Ion–Image Interactions. Journal of Physical Chemistry B, 2018, 122, 1545-1550.	1.2	4
24	Local growth rules can maintain metabolically efficient spatial structure throughout growth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3593-3598.	3.3	2
25	Enhanced diffusion by binding to the crosslinks of a polymer gel. Nature Communications, 2018, 9, 4348.	5.8	45
26	A universal growth limit for circular lichens. Journal of the Royal Society Interface, 2018, 15, 20180063.	1.5	9
27	Cascade leading to the emergence of small structures in vortex ring collisions. Physical Review Fluids, 2018, 3, .	1.0	29
28	Emergence of small scales in vortex ring collisions. Physical Review Fluids, 2018, 3, .	1.0	3
29	Spontaneous emergence of catalytic cycles with colloidal spheres. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4342-4347.	3.3	18
30	Mechanism of signal propagation in <i>Physarum polycephalum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5136-5141.	3.3	73
31	Using active colloids as machines to weave and braid on the micrometer scale. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 257-262.	3.3	19
32	Local Pore Size Correlations Determine Flow Distributions in Porous Media. Physical Review Letters, 2017, 119, 144501.	2.9	65
33	Optimal Design of Experiments by Combining Coarse and Fine Measurements. Physical Review Letters, 2017, 119, 208101.	2.9	5
34	Mutation at Expanding Front of Self-Replicating Colloidal Clusters. Physical Review Letters, 2016, 117, 238004.	2.9	8
35	Receptor arrays optimized for natural odor statistics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5570-5575.	3.3	36
36	Information capacity of specific interactions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5841-5846.	3.3	23

MICHAEL P BRENNER

#	Article	IF	CITATIONS
37	Designing steep, sharp patterns on uniformly ion-bombarded surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11425-11430.	3.3	8
38	A Dialogue between Online and On-Campus Versions of the Same Course: Lessons from Harvard's Science and Cooking Course. ACS Symposium Series, 2016, , 89-107.	0.5	2
39	Predicting protein–ligand affinity with a random matrix framework. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13564-13569.	3.3	24
40	Pruning to Increase Taylor Dispersion in <i>Physarum polycephalum</i> Networks. Physical Review Letters, 2016, 117, 178103.	2.9	37
41	Probing phenotypic growth in expanding Bacillus subtilis biofilms. Applied Microbiology and Biotechnology, 2016, 100, 4607-4615.	1.7	40
42	Potential singularity mechanism for the Euler equations. Physical Review Fluids, 2016, 1, .	1.0	40
43	Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements. Physical Review Letters, 2015, 114, 228301.	2.9	43
44	Undesired usage and the robust self-assembly of heterogeneous structures. Nature Communications, 2015, 6, 6203.	5.8	49
45	Multifarious assembly mixtures: Systems allowing retrieval of diverse stored structures. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 54-59.	3.3	52
46	Biophysics of Molecular Gastronomy. Cell, 2015, 161, 5-8.	13.5	12
47	Femtosecond-laser hyperdoping silicon in an SF ₆ atmosphere: Dopant incorporation mechanism. Journal of Applied Physics, 2015, 117, 125301.	1.1	24
48	Creating femtosecond-laser-hyperdoped silicon with a homogeneous doping profile. Applied Physics Letters, 2015, 106, .	1.5	19
49	Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator. Science, 2015, 349, 956-960.	6.0	110
50	Conservation Weighting Functions Enable Covariance Analyses to Detect Functionally Important Amino Acids. PLoS ONE, 2014, 9, e107723.	1.1	10
51	Fluid mechanical responses to nutrient depletion in fungi and biofilms. Physics of Fluids, 2014, 26, .	1.6	5
52	Feynman-Hellmann Theorem and Signal Identification from Sample Covariance Matrices. Physical Review X, 2014, 4, .	2.8	2
53	Characterization of Patterns Formed by Shadows of Spheres. Physical Review Letters, 2014, 112, 235502.	2.9	6
54	Shared developmental programme strongly constrains beak shape diversity in songbirds. Nature Communications, 2014, 5, 3700.	5.8	46

MICHAEL P BRENNER

#	Article	IF	CITATIONS
55	Size limits of self-assembled colloidal structures made using specific interactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15918-15923.	3.3	79
56	Systems analysis of the CO2 concentrating mechanism in cyanobacteria. ELife, 2014, 3, e02043.	2.8	77
57	Liquid transport facilitated by channels in <i>Bacillus subtilis</i> biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 848-852.	3.3	278
58	A natural O-ring optimizes the dispersal of fungal spores. Journal of the Royal Society Interface, 2013, 10, 20130187.	1.5	18
59	Osmotic spreading of <i>Bacillus subtilis</i> biofilms driven by an extracellular matrix. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1116-1121.	3.3	246
60	Endocytic Traffic: Vesicle Fusion Cascade in the Early Endosomes. Current Biology, 2012, 22, R597-R598.	1.8	4
61	Absence of singular stretching of interacting vortex filaments. Journal of Fluid Mechanics, 2012, 707, 191-204.	1.4	15
62	The mechanism of a splash on a dry solid surface. Journal of Fluid Mechanics, 2012, 690, 148-172.	1.4	127
63	Deriving Finite Sphere Packings. SIAM Journal on Discrete Mathematics, 2011, 25, 1860-1901.	0.4	43
64	Design principles for self-assembly with short-range interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5193-5198.	3.3	86
65	Potential Flows of Viscous and Viscoelastic Fluids. By Daniel Joseph, Toshio Funada & Jing Wang. Cambridge University Press, New York, 2007. 516 pp. ISBN-13: 978 0 521 87337 6 \$104.99 Journal of Fluid Mechanics, 2010, 660, 538-539.	1.4	0
66	Events before droplet splashing on a solid surface. Journal of Fluid Mechanics, 2010, 647, 163-185.	1.4	161
67	Chemotactic patterns without chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11653-11654.	3.3	12
68	Breakup of diminutive Rayleigh jets. Physics of Fluids, 2010, 22, .	1.6	147
69	Resolving intercontinental pollution plumes in global models of atmospheric transport. Journal of Geophysical Research, 2010, 115, .	3.3	82
70	<i>Bacillus subtilis</i> spreads by surfing on waves of surfactant. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18109-18113.	3.3	158
71	Cavitation in linear bubbles. Journal of Fluid Mechanics, 2009, 632, 1-4.	1.4	5
72	Dynamic Equilibrium Mechanism for Surface Nanobubble Stabilization. Physical Review Letters, 2008, 101, 214505.	2.9	267

#	Article	IF	CITATIONS
73	Explosively launched spores of ascomycete fungi have drag-minimizing shapes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20583-20588.	3.3	70
74	Symmetry unbreaking in the shapes of perfect projectiles. Physics of Fluids, 2008, 20, .	1.6	10
75	A model for velocity fluctuations in sedimentation. Journal of Fluid Mechanics, 2004, 501, 71-104.	1.4	118
76	Thermal bending of liquid sheets and jets. Physics of Fluids, 2003, 15, 3568-3571.	1.6	7
77	Optimal design of a bistable switch. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9663-9667.	3.3	26
78	Pinching threads, singularities and the number 0.0304 Physics of Fluids, 1996, 8, 2827-2836.	1.6	121