Robert P Feil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5110759/publications.pdf

Version: 2024-02-01

28242 24961 18,130 117 55 109 citations h-index papers

g-index 123 123 123 21236 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Emerging chromatin structural roles of the methyl-CpG binding protein MeCP2. Epigenomics, 2021, 13, 405-409.	1.0	2
2	Zfp57 inactivation illustrates the role of ICR methylation in imprinted gene expression during neural differentiation of mouse ESCs. Scientific Reports, 2021, 11, 13802.	1.6	7
3	Exploring chromatin structural roles of non-coding RNAs at imprinted domains. Biochemical Society Transactions, 2021, 49, 1867-1879.	1.6	10
4	Methylation of the C19MC microRNA locus in the placenta: association with maternal and chilhood body size. International Journal of Obesity, 2020, 44, 13-22.	1.6	10
5	A Role for Caenorhabditis elegans COMPASS in Germline Chromatin Organization. Cells, 2020, 9, 2049.	1.8	6
6	Imprinted Small RNAs Unraveled: Maternal MicroRNAs Antagonize a Paternal-Genome-Driven Gene Expression Network. Molecular Cell, 2020, 78, 3-5.	4.5	6
7	Differential 3D chromatin organization and gene activity in genomic imprinting. Current Opinion in Genetics and Development, 2020, 61, 17-24.	1.5	21
8	Histone H3K9 Methyltransferase G9a in Oocytes Is Essential for Preimplantation Development but Dispensable for CG Methylation Protection. Cell Reports, 2019, 27, 282-293.e4.	2.9	62
9	Genomic Imprinting and Physiological Processes in Mammals. Cell, 2019, 176, 952-965.	13.5	395
10	CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biology, 2019, 20, 272.	3.8	56
11	Stability and Lability of Parental Methylation Imprints in Development and Disease. Genes, 2019, 10, 999.	1.0	23
12	Environmental Effects on Genomic Imprinting in Development and Disease., 2019,, 3-23.		1
13	Meg3 Non-coding RNA Expression Controls Imprinting by Preventing Transcriptional Upregulation in cis. Cell Reports, 2018, 23, 337-348.	2.9	54
14	Increased H3K9 methylation and impaired expression of Protocadherins are associated with the cognitive dysfunctions of the Kleefstra syndrome. Nucleic Acids Research, 2018, 46, 4950-4965.	6.5	32
15	Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLoS Biology, 2018, 16, e2005595.	2.6	75
16	Parallels between Mammalian Mechanisms of Monoallelic Gene Expression. Trends in Genetics, 2018, 34, 954-971.	2.9	44
17	Environmental effects on chromatin repression at imprinted genes and endogenous retroviruses. Current Opinion in Chemical Biology, 2018, 45, 139-147.	2.8	15
18	In Vitro Corticogenesis from Embryonic Stem Cells Recapitulates the In Vivo Epigenetic Control of Imprinted Gene Expression. Cerebral Cortex, 2017, 27, bhw102.	1.6	18

#	Article	IF	CITATIONS
19	Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction InÂVivo Reveals Structural Roles of Condensin Complexes. Cell Reports, 2017, 18, 1791-1803.	2.9	45
20	The placental imprinted DLK1-DIO3 domain: a new link to prenatal and postnatal growth in humans. American Journal of Obstetrics and Gynecology, 2017, 217, 350.e1-350.e13.	0.7	23
21	Oocyte-derived histone H3 lysine 27 methylation controls gene expression in the early embryo. Nature Structural and Molecular Biology, 2017, 24, 685-686.	3.6	7
22	Environmental Effects on Genomic Imprinting in Development and Disease., 2017,, 1-21.		0
23	The cell proliferation antigen Ki-67 organises heterochromatin. ELife, 2016, 5, e13722.	2.8	237
24	PRC-mediated interaction networks of repressed genes: emerging insights and possible roles. Epigenomics, 2016, 8, 733-735.	1.0	0
25	ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells. Nucleic Acids Research, 2016, 44, 8165-8178.	6.5	73
26	EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome Research, 2016, 26, 192-202.	2.4	60
27	Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Research, 2016, 44, 621-635.	6.5	41
28	Regulatory links between imprinted genes: evolutionary predictions and consequences. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152760.	1,2	56
29	ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells. Nucleic Acids Research, 2016, 44, 1118-1132.	6.5	50
30	Noncoding RNAs and Chromatin Modifications in the Developmental Control of Imprinted Genes. Epigenetics and Human Health, 2016, , 19-40.	0.2	0
31	Long noncoding RNAs in human disease: emerging mechanisms and therapeutic strategies. Epigenomics, 2015, 7, 877-879.	1.0	104
32	Exogenous Expression of Human Protamine 1 (hPrm1) Remodels Fibroblast Nuclei into Spermatid-like Structures. Cell Reports, 2015, 13, 1765-1771.	2.9	39
33	Insertion of an Imprinted Insulator into the IgH Locus Reveals Developmentally Regulated, Transcription-Dependent Control of $V(D)$ J Recombination. Molecular and Cellular Biology, 2015, 35, 529-543.	1.1	12
34	ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes. Cell Reports, 2015, 11, 405-418.	2.9	152
35	Chromatin mechanisms in the developmental control of imprinted gene expression. International Journal of Biochemistry and Cell Biology, 2015, 67, 139-147.	1.2	53
36	PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G + C-rich regions of the mouse genome. Nucleic Acids Research, 2014, 42, 235-248.	6.5	72

#	Article	IF	CITATIONS
37	ICR Noncoding RNA Expression Controls Imprinting and DNA Replication at the Dlk1-Dio3 Domain. Developmental Cell, 2014 , 31 , $19-33$.	3.1	64
38	Imprinted gene expression in hybrids: perturbed mechanisms and evolutionary implications. Heredity, 2014, 113, 167-175.	1.2	43
39	Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. ELife, 2014, 3, e01632.	2.8	99
40	New insights into establishment and maintenance of DNA methylation imprints in mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110336.	1.8	179
41	Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics, 2013, 5, 715-728.	1.0	40
42	Transcription and histone methylation changes correlate with imprint acquisition in male germ cells. EMBO Journal, 2012, 31, 606-615.	3.5	71
43	Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease. Epigenetics, 2012, 7, 1341-1348.	1.3	7 3
44	Characterization of Novel Paternal ncRNAs at the Plagl1 Locus, Including Hymai, Predicted to Interact with Regulators of Active Chromatin. PLoS ONE, 2012, 7, e38907.	1.1	21
45	Epigenetics and the environment: emerging patterns and implications. Nature Reviews Genetics, 2012, 13, 97-109.	7.7	1,524
46	Child Health, Developmental Plasticity, and Epigenetic Programming. Endocrine Reviews, 2011, 32, 159-224.	8.9	533
47	Synergic reprogramming of mammalian cells by combined exposure to mitotic <i>Xenopus</i> egg extracts and transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17331-17336.	3.3	47
48	Human imprinted retrogenes exhibit non-canonical imprint chromatin signatures and reside in non-imprinted host genes. Nucleic Acids Research, 2011, 39, 4577-4586.	6.5	22
49	1q12 chromosome translocations form aberrant heterochromatic foci associated with changes in nuclear architecture and gene expression in B cell lymphoma. EMBO Molecular Medicine, 2010, 2, 159-171.	3.3	33
50	Epigenetic Transitions in Germ Cell Development and Meiosis. Developmental Cell, 2010, 19, 675-686.	3.1	212
51	Genome-wide DNA demethylation in mammals. Genome Biology, 2010, 11, 110.	13.9	40
52	Genomic imprinting and human disease. Essays in Biochemistry, 2010, 48, 187-200.	2.1	91
53	Epigenetic asymmetry in the zygote and mammalian development. International Journal of Developmental Biology, 2009, 53, 191-201.	0.3	60
54	Reciprocal imprinting of human GRB10 in placental trophoblast and brain: evolutionary conservation of reversed allelic expression. Human Molecular Genetics, 2009, 18, 3066-3074.	1.4	92

#	Article	IF	Citations
55	Perturbation of genomic imprinting in oligozoospermia. Epigenetics, 2009, 4, 27-30.	1.3	72
56	Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Human Molecular Genetics, 2009, 18, 3375-3383.	1.4	115
57	Chromatin mechanisms in genomic imprinting. Mammalian Genome, 2009, 20, 544-556.	1.0	118
58	Ready for the marks. Nature, 2009, 461, 359-360.	13.7	13
59	Epigenetic Mechanisms in Mammals and Their Effects on Cloning Procedures. , 2009, , 559-579.		2
60	A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10. EMBO Journal, 2008, 27, 2523-2532.	3.5	75
61	PRâ€SET7 and SUV4â€20H regulate H4 lysineâ€20 methylation at imprinting control regions in the mouse. EMBO Reports, 2008, 9, 998-1005.	2.0	72
62	The <i>Air</i> Noncoding RNA Epigenetically Silences Transcription by Targeting G9a to Chromatin. Science, 2008, 322, 1717-1720.	6.0	883
63	Epigenetics, an emerging discipline with broad implications. Comptes Rendus - Biologies, 2008, 331, 837-843.	0.1	17
64	A KRAB Domain Zinc Finger Protein in Imprinting and Disease. Developmental Cell, 2008, 15, 487-488.	3.1	26
65	Comparative analysis of human chromosome $7q21$ and mouse proximal chromosome 6 reveals a placental-specific imprinted gene, <i>TFPl2</i> / <i>Tfpi2</i> , which requires EHMT2 and EED for allelic-silencing. Genome Research, 2008, 18, 1270-1281.	2.4	72
66	G9a Histone Methyltransferase Contributes to Imprinting in the Mouse Placenta. Molecular and Cellular Biology, 2008, 28, 1104-1113.	1.1	172
67	Identification of the Imprinted KLF14 Transcription Factor Undergoing Human-Specific Accelerated Evolution. PLoS Genetics, 2007, 3, e65.	1.5	82
68	Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO Journal, 2007, 26, 720-729.	3.5	198
69	Epigenetic stability of embryonic stem cells and developmental potential. Trends in Biotechnology, 2007, 25, 556-562.	4.9	42
70	Convergent evolution of genomic imprinting in plants and mammals. Trends in Genetics, 2007, 23, 192-199.	2.9	238
71	Chromatin Immunoprecipitation (ChIP) on Unfixed Chromatin from Cells and Tissues to Analyze Histone Modifications. Cold Spring Harbor Protocols, 2007, 2007, pdb.prot4767-pdb.prot4767.	0.2	24
72	PCR-Based Analysis of Immunoprecipitated Chromatin. Cold Spring Harbor Protocols, 2007, 2007, pdb.prot4768-pdb.prot4768.	0.2	3

#	Article	IF	Citations
73	Genomic imprinting in the placenta. Cytogenetic and Genome Research, 2006, 113, 90-98.	0.6	116
74	MEDEA Takes Control of Its Own Imprinting. Cell, 2006, 124, 468-470.	13.5	16
75	A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells. Cell, 2006, 125, 315-326.	13.5	4,773
76	Placental abnormalities associated with post-natal mortality in sheep somatic cell clones. Theriogenology, 2006, 65, 1110-1121.	0.9	69
77	Environmental and nutritional effects on the epigenetic regulation of genes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 600, 46-57.	0.4	198
78	Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. BioEssays, 2006, 28, 453-459.	1.2	106
79	Stochastic imprinting in the progeny of Dnmt3Lâ^'/â^' females. Human Molecular Genetics, 2006, 15, 589-598.	1.4	60
80	Limited evolutionary conservation of imprinting in the human placenta. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6623-6628.	3.3	226
81	Global hypomethylation of the genome in XX embryonic stem cells. Nature Genetics, 2005, 37, 1274-1279.	9.4	222
82	Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction. Birth Defects Research Part C: Embryo Today Reviews, 2005, 75, 81-97.	3.6	91
83	Ovine Somatic Cell Nuclear Transfer. , 2005, , .		0
84	Genomic Imprinting and Its Effects on Genes and Chromosomes in Mammals., 2004, 240, 53-76.		2
85	Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nature Genetics, 2004, 36, 1296-1300.	9.4	386
86	Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nature Genetics, 2004, 36, 1291-1295.	9.4	394
87	Site-Specific Analysis of Histone Methylation and Acetylation. , 2004, 287, 099-120.		84
88	Epigenetic regulation of mammalian genomic imprinting. Current Opinion in Genetics and Development, 2004, 14, 188-195.	1.5	346
89	Chromosome Loops, Insulators, and Histone Methylation: New Insights into Regulation of Imprinting in Clusters. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 29-38.	2.0	16
90	Conservation of IGF2-H19 and IGF2R imprinting in sheep: effects of somatic cell nuclear transfer. Mechanisms of Development, 2003, 120, 1433-1442.	1.7	112

#	Article	IF	CITATIONS
91	Epigenetic Properties and Identification of an Imprint Mark in the Nesp-Gnasxl Domain of the Mouse Gnas Imprinted Locus. Molecular and Cellular Biology, 2003, 23, 5475-5488.	1.1	110
92	Nuclei of Nonviable Ovine Somatic Cells Develop into Lambs after Nuclear Transplantation. Biology of Reproduction, 2002, 67, 126-132.	1.2	56
93	Probing Chromatin Structure with Nuclease Sensitivity Assays. , 2002, 181, 269-284.		5
94	Allelic inactivation of the pseudoautosomal gene SYBL1 is controlled by epigenetic mechanisms common to the X and Y chromosomes. Human Molecular Genetics, 2002, 11, 3191-3198.	1.4	47
95	Inhibition of Histone Deacetylases Alters Allelic Chromatin Conformation at the Imprinted U2af1-rs1 Locus in Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2002, 277, 11728-11734.	1.6	32
96	Differential patterns of histone methylation and acetylation distinguish active and repressed alleles at X-linked genes. Cytogenetic and Genome Research, 2002, 99, 66-74.	0.6	34
97	Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO Journal, 2002, 21, 6560-6570.	3.5	198
98	Environmental effects on genomic imprinting in mammals. Toxicology Letters, 2001, 120, 143-150.	0.4	47
99	Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Human Reproduction Update, 2001, 7, 419-427.	5.2	228
100	Early-embryonic culture and manipulation could affect genomic imprinting. Trends in Molecular Medicine, 2001, 7, 245-246.	3.5	14
101	Culture of Preimplantation Mouse Embryos Affects Fetal Development and the Expression of Imprinted Genes1. Biology of Reproduction, 2001, 64, 918-926.	1.2	532
102	DNA Methylation Is Linked to Deacetylation of Histone H3, but Not H4, on the Imprinted Genes Snrpn and U2af1-rs1. Molecular and Cellular Biology, 2001, 21, 5426-5436.	1.1	130
103	Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant. Human Molecular Genetics, 2000, 9, 2575-2587.	1.4	135
104	Genomic imprinting in mammals: an interplay between chromatin and DNA methylation?. Trends in Genetics, 1999, 15, 431-435.	2.9	142
105	Parental Allele-Specific Chromatin Configuration in a Boundary–Imprinting-Control Element Upstream of the Mouse <i>H19</i> Gene. Molecular and Cellular Biology, 1999, 19, 2556-2566.	1.1	87
106	Genomic imprinting in ruminants: allele-specific gene expression in parthenogenetic sheep. Mammalian Genome, 1998, 9, 831-834.	1.0	64
107	Parental Chromosome-specific Chromatin Conformation in the Imprinted U2af1-rs1 Gene in the Mouse. Journal of Biological Chemistry, 1997, 272, 20893-20900.	1.6	49
108	Genomic Imprinting: A Chromatin Connection. American Journal of Human Genetics, 1997, 61, 1213-1219.	2.6	40

#	Article	IF	CITATIONS
109	Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse lgf2. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12509-12514.	3.3	248
110	Nucleotide Sequence of a 28-kb Mouse Genomic Region Comprising the Imprinted Igf2 Gene. DNA Research, 1996, 3, 331-335.	1.5	14
111	Chromatin structure and imprinting: Developmental control of DNase-I sensitivity in the mouse insulin-like growth factor 2 gene. Genesis, 1995, 17, 240-252.	3.3	32
112	Cbx-rs2 (M31), a mouse homolog of the Drosophila Heterochromatin protein 1 gene, maps to distal Chromosome 11 and is nonallelic to Om. Mammalian Genome, 1995, 6, 469-471.	1.0	5
113	Methylation analysis on individual chromosomes: improved protocol for bisulphite genomic sequencing. Nucleic Acids Research, 1994, 22, 695-696.	6.5	92
114	Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature, 1993, 361, 726-730.	13.7	1,157
115	Chromosomal rearrangement segregating with adrenoleukodystrophy: a molecular analysis Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9489-9493.	3.3	5
116	A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes. Genomics, 1990, 6, 367-373.	1.3	64
117	A probe from an X–Y homology region detects RFLPs in Xq13–q22. Nucleic Acids Research, 1989, 17, 1279-1279.	6.5	1