Hao-Cheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5109793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry A, 2014, 2, 10225-10230.	10.3	620
2	Janus Membranes: Exploring Duality for Advanced Separation. Angewandte Chemie - International Edition, 2016, 55, 13398-13407.	13.8	407
3	Surface engineering of polymer membranes via mussel-inspired chemistry. Journal of Membrane Science, 2015, 483, 42-59.	8.2	358
4	Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter, 2019, 1, 115-155.	10.0	301
5	Silica-Decorated Polypropylene Microfiltration Membranes with a Mussel-Inspired Intermediate Layer for Oil-in-Water Emulsion Separation. ACS Applied Materials & Interfaces, 2014, 6, 12566-12572.	8.0	295
6	Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. Journal of Membrane Science, 2015, 476, 50-58.	8.2	294
7	Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance. Journal of Materials Chemistry A, 2017, 5, 16289-16295.	10.3	291
8	Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. Journal of Membrane Science, 2016, 515, 238-244.	8.2	239
9	Dopamine: Just the Right Medicine for Membranes. Advanced Functional Materials, 2018, 28, 1705327.	14.9	222
10	Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. Journal of Membrane Science, 2014, 466, 18-25.	8.2	220
11	Polyphenol Coating as an Interlayer for Thin-Film Composite Membranes with Enhanced Nanofiltration Performance. ACS Applied Materials & Interfaces, 2016, 8, 32512-32519.	8.0	206
12	Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification. Advances in Colloid and Interface Science, 2018, 256, 111-125.	14.7	202
13	Janus Membranes: Creating Asymmetry for Energy Efficiency. Advanced Materials, 2018, 30, e1801495.	21.0	193
14	Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water. Journal of Materials Chemistry A, 2015, 3, 14438-14444.	10.3	150
15	Polydopamine-Coated Porous Substrates as a Platform for Mineralized β-FeOOH Nanorods with Photocatalysis under Sunlight. ACS Applied Materials & Interfaces, 2015, 7, 11567-11574.	8.0	150
16	Crude-Oil-Repellent Membranes by Atomic Layer Deposition: Oxide Interface Engineering. ACS Nano, 2018, 12, 8678-8685.	14.6	150
17	Surface and interface engineering for organic–inorganic composite membranes. Journal of Materials Chemistry A, 2016, 4, 9716-9729.	10.3	143
18	Janus Membranes with Charged Carbon Nanotube Coatings for Deemulsification and Separation of Oil-in-Water Emulsions. ACS Applied Materials & Interfaces, 2018, 10, 9832-9840.	8.0	130

#	Article	IF	CITATIONS
19	Janus Membranes with Asymmetric Wettability for Fine Bubble Aeration. Advanced Materials Interfaces, 2016, 3, 1500774.	3.7	119
20	Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. Journal of Membrane Science, 2016, 500, 8-15.	8.2	116
21	Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation. Journal of Membrane Science, 2017, 523, 1-7.	8.2	110
22	Co-deposition Kinetics of Polydopamine/Polyethyleneimine Coatings: Effects of Solution Composition and Substrate Surface. Langmuir, 2018, 34, 13123-13131.	3.5	106
23	Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology. Journal of Energy Chemistry, 2020, 44, 41-50.	12.9	105
24	Slippery liquid-infused porous surfaces (SLIPSs): a perfect solution to both marine fouling and corrosion?. Journal of Materials Chemistry A, 2020, 8, 7536-7547.	10.3	104
25	Chinese Ink: A Powerful Photothermal Material for Solar Steam Generation. Advanced Materials Interfaces, 2019, 6, 1801252.	3.7	100
26	Janus Membranes with Opposing Surface Wettability Enabling Oil-to-Water and Water-to-Oil Emulsification. ACS Applied Materials & Interfaces, 2017, 9, 5062-5066.	8.0	97
27	Polydopamine gradients by oxygen diffusion controlled autoxidation. Chemical Communications, 2013, 49, 10522.	4.1	96
28	Effects of polyethyleneimine molecular weight and proportion on the membrane hydrophilization by codepositing with dopamine. Journal of Applied Polymer Science, 2016, 133, .	2.6	95
29	Solar-driven evaporators for water treatment: challenges and opportunities. Environmental Science: Water Research and Technology, 2021, 7, 24-39.	2.4	94
30	Nitrogen-doped Nb2CTx MXene as anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2019, 793, 505-511.	5.5	87
31	Novel nanofiltration membrane with ultrathin zirconia film as selective layer. Journal of Membrane Science, 2016, 500, 265-271.	8.2	84
32	Composite free-standing films of polydopamine/polyethyleneimine grown at the air/water interface. RSC Advances, 2014, 4, 45415-45418.	3.6	81
33	Highly Stable, Protein-Resistant Surfaces via the Layer-by-Layer Assembly of Poly(sulfobetaine) Tj ETQq1 1 0.7843	814.rgBT /	Overlock 10
34	Porphyrin Covalent Organic Framework (POF)â€Based Interface Engineering for Solar Steam Generation. Advanced Materials Interfaces, 2019, 6, 1900254.	3.7	76
35	Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes. Applied Surface Science, 2016, 360, 291-297.	6.1	74
36	Atomic layer deposition for membrane interface engineering. Nanoscale, 2018, 10, 20505-20513.	5.6	74

#	Article	IF	CITATIONS
37	Janus Membranes via Diffusionâ€Controlled Atomic Layer Deposition. Advanced Materials Interfaces, 2018, 5, 1800658.	3.7	59
38	Recent progress in molecular engineering to tailor organic–inorganic interfaces in composite membranes. Molecular Systems Design and Engineering, 2020, 5, 433-444.	3.4	54
39	Suspended Membrane Evaporators Integrating Environmental and Solar Evaporation for Oily Wastewater Purification. ACS Applied Materials & Interfaces, 2021, 13, 39513-39522.	8.0	54
40	Superhydrophobic membranes via facile bio-inspired mineralization for vacuum membrane distillation. Journal of Membrane Science, 2017, 540, 98-107.	8.2	53
41	Separators with Biomineralized Zirconia Coatings for Enhanced Thermo- and Electro-Performance of Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 21971-21978.	8.0	50
42	Composite nanofiltration membranes via the co-deposition and cross-linking of catechol/polyethylenimine. RSC Advances, 2016, 6, 34096-34102.	3.6	49
43	Polymer membrane with a mineral coating for enhanced curling resistance and surface wettability. Chemical Communications, 2015, 51, 12779-12782.	4.1	48
44	Preparation of Iridescent 2D Photonic Crystals by Using a Mussel-Inspired Spatial Patterning of ZIF-8 with Potential Applications in Optical Switch and Chemical Sensor. ACS Applied Materials & Interfaces, 2017, 9, 38076-38080.	8.0	47
45	Mussel-Inspired Modification of Honeycomb Structured Films for Superhydrophobic Surfaces with Tunable Water Adhesion. Journal of Physical Chemistry C, 2015, 119, 3667-3673.	3.1	37
46	Underwater superoleophobic meshes fabricated by poly(sulfobetaine)/polydopamine co-deposition. RSC Advances, 2015, 5, 47592-47598.	3.6	35
47	Thermally induced phase separation of poly(vinylidene fluoride)/diluent systems: Optical microscope and infrared spectroscopy studies. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1438-1447.	2.1	34
48	Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. Journal of Materials Chemistry A, 2018, 6, 2908-2913.	10.3	33
49	Photothermal Devices for Sustainable Uses Beyond Desalination. Advanced Energy and Sustainability Research, 2021, 2, 2000056.	5.8	32
50	Codeposition of catechol–polyethyleneimine followed by interfacial polymerization for nanofiltration membranes with enhanced stability. Journal of Applied Polymer Science, 2017, 134, 45422.	2.6	31
51	Ferric tannate photothermal material for efficient water distillation. Environmental Science: Water Research and Technology, 2020, 6, 911-915.	2.4	30
52	Unraveling the Interfacial Structure–Performance Correlation of Flexible Metal–Organic Framework Membranes on Polymeric Substrates. ACS Applied Materials & Interfaces, 2019, 11, 5570-5577.	8.0	29
53	Iono-Elastomer-Based Wearable Strain Sensor with Real-Time Thermomechanical Dual Response. ACS Applied Materials & Interfaces, 2018, 10, 32435-32443.	8.0	27
54	Janus Reactors with Highly Efficient Enzymatic CO ₂ Nanocascade at Air–Liquid Interface. ACS Applied Materials & Interfaces, 2017, 9, 42806-42815.	8.0	25

#	Article	IF	CITATIONS
55	Anti-corrosion coating within a polymer network: Enabling photothermal repairing underwater. Chemical Engineering Journal, 2021, 412, 128640.	12.7	25
56	Ultrafast formation of pyrogallol/polyethyleneimine nanofilms for aqueous and organic nanofiltration. Journal of Membrane Science, 2019, 570-571, 270-277.	8.2	23
57	Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules, 2022, 55, 3363-3383.	4.8	23
58	Polydopamine as a Catalyst for Thiol Coupling. ChemCatChem, 2015, 7, 3822-3825.	3.7	22
59	Polydopamine-assisted deposition of heparin for selective adsorption of low-density lipoprotein. RSC Advances, 2015, 5, 12922-12930.	3.6	22
60	Dual-Layer Nanofilms via Mussel-Inspiration and Silication for Non-Iridescent Structural Color Spectrum in Flexible Displays. ACS Applied Nano Materials, 2019, 2, 4556-4566.	5.0	22
61	Direct synthesis of layered double hydroxides monolayer nanosheets for co-assembly of nanobrick wall hybrid film with excellent corrosion resistance. Applied Surface Science, 2019, 493, 239-249.	6.1	21
62	Nonlithographic Fabrication of Nanostructured Micropatterns via Breath Figures and Solution Growth. Journal of Physical Chemistry C, 2014, 118, 4403-4409.	3.1	20
63	Underwater superoleophobic coatings fabricated from tannic acid-decorated carbon nanotubes. RSC Advances, 2015, 5, 16112-16115.	3.6	18
64	Sandwich-Structured Photothermal Wood for Durable Moisture Harvesting and Pumping. ACS Applied Materials & Interfaces, 2021, 13, 33713-33721.	8.0	18
65	Solar Steam: Chinese Ink: A Powerful Photothermal Material for Solar Steam Generation (Adv. Mater.) Tj ETQq1 🔅	1 0,78431 3.7	4 rgBT /Overle
66	Janusâ€Membranen: Erforschung ihrer Dualitäfür hochentwickelte Stofftrennungen. Angewandte Chemie, 2016, 128, 13596-13605.	2.0	13
67	Slippery liquidâ€infused porous surface via thermally induced phase separation for enhanced corrosion protection. Journal of Polymer Science, 2020, 58, 3031-3041.	3.8	13
68	Brushable Lubricant-Infused Porous Coating with Enhanced Stability by One-Step Phase Separation. ACS Applied Materials & Interfaces, 2021, 13, 23134-23141.	8.0	13
69	When SLIPS meets TIPS: An endogenous lubricant-infused surface by taking the diluent as the lubricant. Chemical Engineering Journal, 2021, 425, 130600.	12.7	12
70	Cu2+/alginate nanofiltration membranes fabricated at the aqueous contra-diffusion "interface―for salt/dye rejection. Desalination, 2022, 535, 115806.	8.2	9
71	Janus Membrane: Janus Membranes: Creating Asymmetry for Energy Efficiency (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870328.	21.0	7
72	Green Photothermal Ink for 0D to 3D Solarâ€Driven Devices. Advanced Materials Interfaces, 2021, 8, 2101639.	3.7	7

#	Article	IF	CITATIONS
73	Membranes: Dopamine: Just the Right Medicine for Membranes (Adv. Funct. Mater. 8/2018). Advanced Functional Materials, 2018, 28, 1870052.	14.9	6
74	Recyclable and Self-Repairable Epoxy Anticorrosion Coatings with Curing-Controlled Thermoplasticity. ACS Applied Polymer Materials, 2022, 4, 1035-1046.	4.4	6
75	Water Treatment: Porphyrin Covalent Organic Framework (POF)-Based Interface Engineering for Solar Steam Generation (Adv. Mater. Interfaces 11/2019). Advanced Materials Interfaces, 2019, 6, 1970072.	3.7	5
76	Endogenous Ionicâ€Liquidâ€Infused Coatings by Phase Separation for Antiâ€Icing and Antiâ€Bacterial Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	4
77	Introduction to molecular engineering for water technologies. Molecular Systems Design and Engineering, 2020, 5, 900-901.	3.4	2
78	PREPARATION OF POROUS POLYACRYLONITRILE ULTRATHIN FIBERS BY ELECTROSPINNING WITH NONSOLVENT INDUCED PHASE SEPARATION. Acta Polymerica Sinica, 2013, 013, 248-254.	0.0	1