

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5109776/publications.pdf Version: 2024-02-01

VANULING

#	Article	IF	CITATIONS
1	Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nature Materials, 2017, 16, 841-848.	27.5	615
2	Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nature Communications, 2017, 8, 339.	12.8	304
3	An Aqueous Caâ€lon Battery. Advanced Science, 2017, 4, 1700465.	11.2	254
4	Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability. Journal of the American Chemical Society, 2015, 137, 4956-4959.	13.7	242
5	A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density. ACS Energy Letters, 2019, 4, 1342-1348.	17.4	154
6	Near Neutral pH Redox Flow Battery with Low Permeability and Longâ€Lifetime Phosphonated Viologen Active Species. Advanced Energy Materials, 2020, 10, 2000100.	19.5	112
7	Extremely Stable Anthraquinone Negolytes Synthesized from Common Precursors. CheM, 2020, 6, 1432-1442.	11.7	100
8	Cross-conjugated oligomeric quinones for high performance organic batteries. Nano Energy, 2017, 37, 46-52.	16.0	97
9	A High Voltage Aqueous Zinc–Organic Hybrid Flow Battery. Advanced Energy Materials, 2019, 9, 1900694.	19.5	97
10	Symmetric All-Quinone Aqueous Battery. ACS Applied Energy Materials, 2019, 2, 4016-4021.	5.1	80
11	High-Rate LiTi ₂ (PO ₄) ₃ @N–C Composite via Bi-nitrogen Sources Doping. ACS Applied Materials & Interfaces, 2015, 7, 28337-28345.	8.0	77
12	In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nature Chemistry, 2022, 14, 1103-1109.	13.6	55
13	Chromate conversion coated aluminium as a light-weight and corrosion-resistant current collector for aqueous lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 395-399.	10.3	50
14	Effect of Molecular Structure of Quinones and Carbon Electrode Surfaces on the Interfacial Electron Transfer Process. ACS Applied Energy Materials, 2020, 3, 1933-1943.	5.1	38
15	Anthraquinone Flow Battery Reactants with Nonhydrolyzable Water-Solubilizing Chains Introduced via a Generic Cross-Coupling Method. ACS Energy Letters, 2022, 7, 226-235.	17.4	35
16	<i>In situ</i> electrosynthesis of anthraquinone electrolytes in aqueous flow batteries. Green Chemistry, 2020, 22, 6084-6092.	9.0	29
17	Highly Stable, Low Redox Potential Quinone for Aqueous Flow Batteries**. Batteries and Supercaps, 2022, 5, .	4.7	22
18	Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing. Nature Communications, 2022, 13, 2140.	12.8	21

Yan Jing

#	Article	IF	CITATIONS
19	A Quinone Anode for Lithiumâ€lon Batteries in Mild Aqueous Electrolytes. ChemSusChem, 2020, 13, 2250-2255.	6.8	20
20	A Water-Miscible Quinone Flow Battery with High Volumetric and Energy Density. ECS Meeting Abstracts, 2019, , .	0.0	0
21	Symmetric All-Quinone Aqueous Battery. ECS Meeting Abstracts, 2019, , .	0.0	Ο