Dieter Adam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5109302/publications.pdf

Version: 2024-02-01

73 papers

10,322 citations

94415 37 h-index 72 g-index

74 all docs

74 docs citations

times ranked

74

17203 citing authors

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
2	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	11.2	811
3	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
4	Compartmentalization of TNF Receptor 1 Signaling. Immunity, 2004, 21, 415-428.	14.3	410
5	FAN, a Novel WD-Repeat Protein, Couples the p55 TNF-Receptor to Neutral Sphingomyelinase. Cell, 1996, 86, 937-947.	28.9	375
6	Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus. Nature, 1989, 341, 415-421.	27.8	346
7	Compartmentalization of TNF Receptor 1 SignalingInternalized TNF Receptosomes as Death Signaling Vesicles. Immunity, 2004, 21, 415-428.	14.3	314
8	RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovascular Research, 2014, 103, 206-216.	3.8	257
9	Anti–Tumor Necrosis Factor Therapy Inhibits Pancreatic Tumor Growth and Metastasis. Cancer Research, 2008, 68, 1443-1450.	0.9	229
10	Inhibition of Receptor Internalization by Monodansylcadaverine Selectively Blocks p55 Tumor Necrosis Factor Receptor Death Domain Signaling. Journal of Biological Chemistry, 1999, 274, 10203-10212.	3.4	181
11	Overexpression of Acid Ceramidase Protects from Tumor Necrosis Factor–Induced Cell Death. Journal of Experimental Medicine, 2000, 192, 601-612.	8.5	164
12	TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cellular and Molecular Life Sciences, 2014, 71, 331-348.	5.4	151
13	A Novel Cytoplasmic Domain of the p55 Tumor Necrosis Factor Receptor Initiates the Neutral Sphingomyelinase Pathway. Journal of Biological Chemistry, 1996, 271, 14617-14622.	3.4	134
14	Ceramide mediates caspaseâ€independent programmed cell death. FASEB Journal, 2005, 19, 1945-1956.	0.5	116
15	Ctk: a protein-tyrosine kinase related to Csk that defines an enzyme family Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2597-2601.	7.1	112
16	Tumor Suppression in <i>Xiphophorus</i> by an Accidentally Acquired Promoter. Science, 1993, 259, 816-819.	12.6	106
17	The Enlarged Lysosomes in <i>beige_j</i> Cells Result From Decreased Lysosome Fission and Not Increased Lysosome Fusion. Traffic, 2012, 13, 108-119.	2.7	103
18	Nuclear Death Receptor TRAIL-R2 Inhibits Maturation of Let-7 and Promotes Proliferation of Pancreatic and Other Tumor Cells. Gastroenterology, 2014, 146, 278-290.	1.3	101

#	Article	IF	CITATIONS
19	Lung Endothelial Ca ²⁺ and Permeability Response to Platelet-Activating Factor Is Mediated by Acid Sphingomyelinase and Transient Receptor Potential Classical 6. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 160-170.	5.6	80
20	Function of the p55 tumor necrosis factor receptor "death domain" mediated by phosphatidylcholine-specific phospholipase C Journal of Experimental Medicine, 1996, 184, 725-733.	8.5	73
21	TRAIL signaling is mediated by DR4 in pancreatic tumor cells despite the expression of functional DR5. Journal of Molecular Medicine, 2010, 88, 729-740.	3.9	73
22	Distinct adapter proteins mediate acid versus neutral sphingomyelinase activation through the p55 receptor for tumor necrosis factor. Journal of Leukocyte Biology, 1998, 63, 678-682.	3.3	66
23	The Polycomb group protein EED couples TNF receptor 1 to neutral sphingomyelinase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1112-1117.	7.1	65
24	A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control. EMBO Journal, 2005, 24, 4260-4270.	7.8	63
25	Cancer and necroptosis: friend or foe?. Cellular and Molecular Life Sciences, 2016, 73, 2183-2193.	5.4	62
26	Ceramide: does it matter for T cells?. Trends in Immunology, 2002, 23, 1-4.	6.8	61
27	Improved Pulmonary Function by Acid Sphingomyelinase Inhibition in a Newborn Piglet Lavage Model. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 1233-1241.	5.6	56
28	The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Communication and Signaling, 2013, 11, 76.	6.5	55
29	Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy, 2016, 12, 833-849.	9.1	52
30	TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells. BMC Cancer, 2014, 14, 74.	2.6	50
31	MaxiK Blockade Selectively Inhibits the Lipopolysaccharide-Induced lκB-α/NF-κB Signaling Pathway in Macrophages. Journal of Immunology, 2006, 177, 4086-4093.	0.8	49
32	Toso regulates the balance between apoptotic and nonapoptotic death receptor signaling by facilitating RIP1 ubiquitination. Blood, 2011, 118, 598-608.	1.4	45
33	Dyrk1a regulates the cardiomyocyte cell cycle via D-cyclin-dependent Rb/E2f-signalling. Cardiovascular Research, 2016, 110, 381-394.	3.8	45
34	Cross-linking of surface immunoglobulin activates src-related tyrosine kinases in WEHI 231 cells. Biochemical and Biophysical Research Communications, 1992, 187, 1536-1544.	2.1	44
35	Interaction with Factor Associated with Neutral Sphingomyelinase Activation, a WD Motif-Containing Protein, Identifies Receptor for Activated C-Kinase 1 as a Novel Component of the Signaling Pathways of the p55 TNF Receptor. Journal of Immunology, 2002, 169, 5161-5170.	0.8	42
36	The murine TRAIL receptor signals caspase-independent cell death through ceramide. Experimental Cell Research, 2006, 312, 3808-3821.	2.6	39

#	Article	IF	CITATIONS
37	TNF-receptor I defective in internalization allows for cell death through activation of neutral sphingomyelinase. Experimental Cell Research, 2006, 312, 2142-2153.	2.6	38
38	TRAIL-R2 promotes skeletal metastasis in a breast cancer xenograft mouse model. Oncotarget, 2015, 6, 9502-9516.	1.8	38
39	Inhibition of ADAM17 impairs endothelial cell necroptosis and blocks metastasis. Journal of Experimental Medicine, 2022, 219, .	8.5	35
40	Activation of ERK1/2 and cPLA2 by the p55 TNF Receptor Occurs Independently of FAN. Biochemical and Biophysical Research Communications, 2000, 274, 506-512.	2.1	32
41	Death Receptors and Caspases: Role in Lymphocyte Proliferation, Cell Death, and Autoimmunity. Immunologic Research, 2005, 33, 149-166.	2.9	31
42	Homoharringtonine, a clinically approved anti-leukemia drug, sensitizes tumor cells for TRAIL-induced necroptosis. Cell Communication and Signaling, 2015, 13, 25.	6.5	31
43	Palmitoylation is required for TNF-R1 signaling. Cell Communication and Signaling, 2019, 17, 90.	6.5	30
44	Impact of p53 status on TRAIL-mediated apoptotic and non-apoptotic signaling in cancer cells. PLoS ONE, 2019, 14, e0214847.	2.5	29
45	Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells. Marine Drugs, 2015, 13, 4470-4491.	4.6	28
46	TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death. Oncotarget, 2016, 7, 75774-75789.	1.8	27
47	Tumor necrosis factor (TNF) interferes with insulin signaling through the p55 TNF receptor death domain. Biochemical and Biophysical Research Communications, 2005, 329, 397-405.	2.1	26
48	Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells. Molecular and Cellular Biology, 2016, 36, 2626-2644.	2.3	25
49	Induction of stress-activated protein kinases/c-Jun N-terminal kinases by the p55 tumour necrosis factor receptor does not require sphingomyelinases. Biochemical Journal, 1998, 333, 343-350.	3.7	22
50	Underwater Leidenfrost nanochemistry for creation of size-tailored zinc peroxide cancer nanotherapeutics. Nature Communications, 2017, 8, 15319.	12.8	20
51	Expression of non-secreted IL-4 is associated with HDAC inhibitor-induced cell death, histone acetylation and c-Jun regulation in human gamma/delta T-cells. Oncotarget, 2016, 7, 64743-64756.	1.8	18
52	Extracellular sphingomyelinase activity impairs TNF- \hat{l} ±-induced endothelial cell death via ADAM17 activation and TNF receptor 1 shedding. Oncotarget, 2017, 8, 72584-72596.	1.8	16
53	The WD repeat protein FAN regulates lysosome size independent from abnormal downregulation/membrane recruitment of protein kinase C. Experimental Cell Research, 2007, 313, 2703-2718.	2.6	15
54	Hodgkin-Reed-Sternberg Cells in Classical Hodgkin Lymphoma Show Alterations of Genes Encoding the NADPH Oxidase Complex and Impaired Reactive Oxygen Species Synthesis Capacity. PLoS ONE, 2013, 8, e84928.	2.5	15

#	Article	IF	CITATIONS
55	RFLP for an EGF-receptor related gene associated with the melanoma oncogene locus of Xiphophorus maculatus. Nucleic Acids Research, 1988, 16, 7212-7212.	14.5	13
56	Effects of Moxifloxacin on Neutrophil Phagocytosis, Burst Production, and Killing as Determined by a Whole-Blood Cytofluorometric Method. Antimicrobial Agents and Chemotherapy, 2001, 45, 2668-2669.	3.2	11
57	Proteolytic control of regulated necrosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2147-2161.	4.1	11
58	Response: antiapoptotic function of Toso (Faim3) in death receptor signaling. Blood, 2012, 119, 1790-1791.	1.4	10
59	Negative control of TRAIL-R1 signaling by transforming growth factor \hat{I}^21 in pancreatic tumor cells involves Smad-dependent down regulation of TRAIL-R1. Cellular Signalling, 2016, 28, 1652-1662.	3 . 6	10
60	Reevaluation of Lung Injury in TNF-Induced Shock: The Role of the Acid Sphingomyelinase. Mediators of Inflammation, 2020, 2020, 1-14.	3.0	9
61	The enhanced susceptibility of ADAM-17 hypomorphic mice to DSS-induced colitis is not ameliorated by loss of RIPK3, revealing an unexpected function of ADAM-17 in necroptosis. Oncotarget, 2018, 9, 12941-12958.	1.8	9
62	Stimulation of Cellular Sphingomyelin Import by the Chemokine Connective Tissue-activating Peptide III. Journal of Biological Chemistry, 2000, 275, 37365-37372.	3.4	8
63	Molecular Cloning, Structural Characterization, and Analysis of Transcription of the Melanoma Oncogene of Xiphophorus. Pigment Cell & Melanoma Research, 1990, 3, 173-180.	3.6	7
64	Reinforcement of integrin-mediated T-Lymphocyte adhesion by TNF-induced Inside-out Signaling. Scientific Reports, 2016, 6, 30452.	3.3	7
65	Necroptosis, ADAM proteases and intestinal (dys)function. International Review of Cell and Molecular Biology, 2020, 353, 83-152.	3.2	5
66	The apoptosis inhibitory domain of FE65-like protein 1 regulates both apoptotic and caspase-independent programmed cell death mediated by tumor necrosis factor. Biochemical and Biophysical Research Communications, 2005, 335, 575-583.	2.1	4
67	Stimulation of the EP ₃ receptor causes lung edema by activation of TRPC6 in pulmonary endothelial cells. European Respiratory Journal, 2022, , 2102635.	6.7	3
68	A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control. EMBO Journal, 2011, 30, 627-627.	7.8	2
69	Bad neighborhoods: apoptotic and necroptotic microenvironments determine liver cancer subtypes. Hepatobiliary Surgery and Nutrition, 2019, 8, 404-406.	1.5	2
70	Differential protection by wildtype vs. organelle-specific Bcl-2 suggests a combined requirement of both the ER and mitochondria in ceramide-mediated caspase-independent programmed cell death. Radiation Oncology, 2009, 4, 41.	2.7	1
71	This thought is as a death. Cellular and Molecular Life Sciences, 2016, 73, 2123-2124.	5.4	1
72	Ars moriendi: Proteases as sculptors of cellular suicide. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119191.	4.1	1

#	Article	IF	CITATIONS
73	Reinforcement of Integrin-Mediated T-Lymphocyte Adhesion by TNF. Biophysical Journal, 2015, 108, 98a.	0.5	O