Moti Herskowitz

List of Publications by Citations

Source: https://exaly.com/author-pdf/5108535/moti-herskowitz-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

125 3,377 34 52 h-index g-index citations papers 3,670 5.07 139 5.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
125	Wetting stability of Si-MCM-41 mesoporous material in neutral, acidic and basic aqueous solutions. <i>Microporous and Mesoporous Materials</i> , 1999 , 33, 149-163	5.3	157
124	High loading of short WS2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation. <i>Journal of Catalysis</i> , 2003 , 213, 163-175	7.3	152
123	Ultrasonically Controlled Deposition Precipitation. <i>Journal of Catalysis</i> , 2001 , 201, 22-36	7.3	142
122	Hydrodesulfurization of Methyl-Substituted Dibenzothiophenes:Fundamental Study of Routes to Deep Desulfurization. <i>Journal of Catalysis</i> , 1996 , 159, 236-245	7.3	105
121	Cerium incorporated ordered manganese oxide OMS-2 materials: Improved catalysts for wet oxidation of phenol compounds. <i>Applied Catalysis B: Environmental</i> , 2005 , 59, 91-98	21.8	95
120	Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation. <i>Journal of Catalysis</i> , 2017 , 348, 29-39	7.3	81
119	Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. <i>Fuel</i> , 2015 , 139, 684-691	7.1	81
118	Supported chromia catalysts for oxidation of organic compounds. <i>Applied Catalysis B: Environmental</i> , 2000 , 27, 73-85	21.8	80
117	Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics. <i>Fuel</i> , 2015 , 161, 287-294	7.1	76
116	High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion. <i>Applied Catalysis B: Environmental</i> , 2004 , 47, 111-126	21.8	71
115	Hierarchical Zeolitic Imidazolate Framework-8 Catalyst for Monoglyceride Synthesis. <i>ChemCatChem</i> , 2013 , 5, 3562-3566	5.2	69
114	Mesoporous alumina catalytic material prepared by grafting wide-pore MCM-41 with an alumina multilayer. <i>Microporous and Mesoporous Materials</i> , 2001 , 49, 65-81	5.3	68
113	Using sonochemical methods for the preparation of mesoporous materials and for the deposition of catalysts into the mesopores. <i>Chemistry - A European Journal</i> , 2001 , 7, 4547-52	4.8	66
112	Combustion of chlorinated VOC on nanostructured chromia aerogel as catalyst and catalyst support. <i>Environmental Science & Environmental Science & Env</i>	10.3	65
111	A novel system consisting of Rh-DuPHOS and ionic liquid for asymmetric hydrogenations. <i>Chemical Communications</i> , 2001 , 2314-5	5.8	61
110	A commercially-viable, one-step process for production of green diesel from soybean oil on Pt/SAPO-11. <i>Fuel</i> , 2013 , 111, 157-164	7.1	57
109	Surface and exchange-bias effects in compacted CaMnO3Ihanoparticles. <i>Physical Review B</i> , 2008 , 77,	3.3	56

(2008-2009)

108	Ultradeep Hydrodesulfurization and Adsorptive Desulfurization of Diesel Fuel on Metal-Rich Nickel Phosphides. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 5239-5249	3.9	55	
107	Sustainable production of green feed from carbon dioxide and hydrogen. <i>ChemSusChem</i> , 2014 , 7, 785-9	948.3	54	
106	Dehydrogenation of propane on modified Pt/Edlumina Performance in hydrogen and steam environment. <i>Applied Catalysis A: General</i> , 2001 , 208, 185-191	5.1	52	
105	Improvement of hydrothermal stability of Pt/SAPO-11 catalyst in hydrodeoxygenation comerization from a tization of vegetable oil. <i>Journal of Catalysis</i> , 2015 , 332, 164-1	7 6·3	51	
104	Low-temperature combustion of 2,4,6-trichlorophenol in catalytic wet oxidation with nanocasted MnICe-oxide catalyst. <i>Journal of Catalysis</i> , 2007 , 247, 201-213	7.3	49	
103	From macroalgae to liquid fuel via waste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating. <i>Energy and Environmental Science</i> , 2016 , 9, 1828-1840	35.4	49	
102	Colloidal Nanocrystals of Zeolite Etabilized in Alumina Matrix. Chemistry of Materials, 1999, 11, 2030-20	03 76	48	
101	Grain boundary control in nanocrystalline MgO as a novel means for significantly enhancing surface basicity and catalytic activity. <i>Journal of Catalysis</i> , 2009 , 263, 196-204	7.3	46	
100	Conversion of CO2, CO, and H2 in CO2 Hydrogenation to Fungible Liquid Fuels on Fe-Based Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 13334-13355	3.9	42	
99	Synthesis of Monoglycerides by Esterification of Oleic Acid with Glycerol in Heterogeneous Catalytic Process Using Tin Drganic Framework Catalyst. <i>Catalysis Letters</i> , 2013 , 143, 356-363	2.8	41	
98	Size- and pressure-controlled ferromagnetism in LaCoO3 nanoparticles. <i>Physical Review B</i> , 2008 , 77,	3.3	40	
97	Catalytic Wet Oxidation of Phenol with Mnte-Based Oxide Catalysts: Impact of Reactive Adsorption on TOC Removal. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 5089-5097	3.9	40	
96	Deep desulfurization of diesel fuels: kinetic modeling of model compounds in trickle-bed. <i>Catalysis Today</i> , 1999 , 48, 41-48	5.3	39	
95	Magnetic properties of nanocrystalline La1\(\mathbb{U}\)MnO3+\(\mathbb{D}\)anganites: size effects. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 346210	1.8	37	
94	Control of surface acidity and catalytic activity of FAl2O3 by adjusting the nanocrystalline contact interface. <i>Journal of Catalysis</i> , 2011 , 282, 215-227	7.3	36	
93	Size effect on SBA-15 microporosity. <i>Microporous and Mesoporous Materials</i> , 2006 , 93, 313-317	5.3	36	
92	Aqueous enantioselective hydrogenation of methyl 2-acetamidoacrylate with Rh-MeDuPHOS occluded in PDMS. <i>Chemical Communications</i> , 2002 , 388-9	5.8	35	
91	Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst. <i>Environmental Science</i> & amp; Technology, 2008 , 42, 5165-70	10.3	33	

90	Cesium salt of a heteropolyacid in nanotubular channels and on the external surface of SBA-15 crystals: preparation and performance as acidic catalysts. <i>Microporous and Mesoporous Materials</i> , 2005 , 80, 43-55	5.3	32
89	Fe/SiO2 heterogeneous Fenton catalyst for continuous catalytic wet peroxide oxidation prepared in situ by grafting of iron released from LaFeO3. <i>Applied Catalysis B: Environmental</i> , 2013 , 138-139, 276-	-23 ¹ 4 ⁸	31
88	Effect of metal dispersion in CO oxidation on supported Pt catalysts. <i>Journal of Catalysis</i> , 1982 , 74, 408	-4/19	31
87	Hydrodearomatization of petroleum fuel fractions on silica supported NiW sulphide with increased stacking number of the WS2 phase?. <i>Fuel</i> , 2003 , 82, 633-639	7.1	29
86	Novel process and catalytic materials for converting CO2 and H2 containing mixtures to liquid fuels and chemicals. <i>Faraday Discussions</i> , 2015 , 183, 197-215	3.6	28
85	Magnetotransport in granular LaMnO3+Ehanganite with nano-sized particles. <i>Journal Physics D:</i> Applied Physics, 2008 , 41, 185001	3	28
84	Selective propane dehydrogenation to propylene on novel bimetallic catalysts. <i>Catalysis Communications</i> , 2001 , 2, 179-185	3.2	28
83	Effect of preparation method and particle size on LaMnO3 performance in butane oxidation. <i>Catalysis Communications</i> , 2011 , 12, 1437-1441	3.2	27
82	Selectivity in heterogeneous catalytic processes. <i>Catalysis Today</i> , 1997 , 36, 497-510	5.3	27
81	Ultradeep AdsorptionDesulfurization of Gasoline with Ni/AlBiO2 Material Catalytically Facilitated by Ethanol. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 6904-6916	3.9	27
80	Dispersions of transition-metal-based phases in mesostructured silica matrixes: preparation of high-performance catalytic materials. <i>Comptes Rendus Chimie</i> , 2005 , 8, 679-691	2.7	27
79	CO oxidation on Pt supported catalysts. Kinetics and multiple steady states. <i>Canadian Journal of Chemical Engineering</i> , 1983 , 61, 194-199	2.3	27
78	Fixed-bed catalytic wet peroxide oxidation of phenol with titania and Au/titania catalysts in dark. <i>Catalysis Today</i> , 2015 , 241, 63-72	5.3	26
77	Regeneration of Poisoned Nickel Catalyst by Supercritical CO2 Extraction. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 1589-1590	3.9	25
76	Novel bifunctional catalysts based on crystalline multi-oxide matrices containing iron ions for CO2 hydrogenation to liquid fuels and chemicals. <i>Faraday Discussions</i> , 2016 , 188, 545-63	3.6	24
75	Density Functional Theory Study of Sulfur Adsorption at the (001) Surface of Metal-Rich Nickel Phosphides: Effect of the Ni/P Ratio. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13313-13321	3.8	24
74	Modeling and simulation of a smart catalytic converter combining NOx storage, ammonia production and SCR. <i>Chemical Engineering Journal</i> , 2009 , 155, 419-426	14.7	24
73	Medium severity hydrotreating and hydrocracking of Israeli shale oil II. Testing of novel catalyst systems in a trickle bed reactor. <i>Fuel</i> , 1998 , 77, 3-13	7.1	24

(2004-2007)

Kinetic experiments and modeling of NO oxidation and SCR of NOx with decane over Cu- and Fe-MFI catalysts. <i>Applied Catalysis B: Environmental</i> , 2007 , 70, 53-57	21.8	24
Simulation of novel process of CO 2 conversion to liquid fuels. <i>Journal of CO2 Utilization</i> , 2017 , 17, 284-	2 , 8.9	23
Modelling of a trickle-bed reactorthe hydrogenation of xylose to xylitol. <i>Chemical Engineering Science</i> , 1985 , 40, 1309-1311	4.4	23
A Simple Approach to Highly Sensitive Tubular Reactors. <i>SIAM Journal on Applied Mathematics</i> , 1988 , 48, 1083-1101	1.8	22
Enantioselective hydrogenation of methyl acetoacetate catalyzed by nickel supported on activated carbon or graphite. <i>Applied Catalysis A: General</i> , 2001 , 208, 91-98	5.1	20
Deep desulfurization of heavy atmospheric gas oil with CoMoAl catalysts effect of sulfur adsorption. <i>Applied Catalysis A: General</i> , 1995 , 122, 99-110	5.1	20
NO oxidation kinetics on iron zeolites: influence of framework type and iron speciation. <i>Topics in Catalysis</i> , 2004 , 30/31, 333-339	2.3	19
A comparative study of an MCM-41 anchored quaternary ammonium chloride/SnCl4 catalyst and its silica gel analogue. <i>Chemical Communications</i> , 2001 , 992-993	5.8	18
Synthesis of LaMnO3 in molten chlorides: effect of preparation conditions. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10914-20	3.6	17
Magnetotransport properties of ferromagnetic LaMnO3+lhano-sized crystals. <i>Journal of Magnetism and Magnetic Materials</i> , 2010 , 322, 1311-1314	2.8	17
Oxidative conversion of LPG to olefins with mixed oxide catalysts: Surface chemistry and reactions network. <i>Studies in Surface Science and Catalysis</i> , 1997 , 315-326	1.8	17
Alumina Foam Coated with Nanostructured Chromia Aerogel: Efficient Catalytic Material for Complete Combustion of Chlorinated VOC. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 7462-7469	3.9	17
Silica-supported small crystals of ZSM-5 zeolite. <i>Applied Catalysis A: General</i> , 1994 , 115, L7-L14	5.1	17
CO2 hydrogenation to higher hydrocarbons on K/FeAlD spinel catalysts promoted with Si, Ti, Zr, Hf, Mn and Ce. <i>Catalysis Science and Technology</i> , 2017 , 7, 4048-4063	5.5	15
Effect of silica wall microporosity on the state and performance of TiO2 nanocrystals in SBA-15 matrix. <i>Microporous and Mesoporous Materials</i> , 2008 , 116, 237-245	5.3	15
Metal particle structure: Contrasting the influences of carbons and refractory oxides. <i>Applied Catalysis A: General</i> , 1998 , 173, 273-287	5.1	14
Electrospun Fe-Al-O Nanobelts for Selective CO Hydrogenation to Light Olefins. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 24855-24867	9.5	13
Efficient immobilization of 12-tungstophosphoric acid catalyst at the surface of silica support grafted with alumina. <i>Catalysis Communications</i> , 2004 , 5, 327-331	3.2	13
	Fe-MFI catalysts. Applied Catalysis B: Environmental, 2007, 70, 53-57 Simulation of novel process of CO 2 conversion to liquid fuels. Journal of CO2 Utilization, 2017, 17, 284- Modelling of a trickle-bed reactorfihe hydrogenation of xylose to xylitol. Chemical Engineering Science, 1985, 40, 1309-1311 A Simple Approach to Highly Sensitive Tubular Reactors. SIAM Journal on Applied Mathematics, 1988, 48, 1083-1101 Enantioselective hydrogenation of methyl acetoacetate catalyzed by nickel supported on activated carbon or graphite. Applied Catalysis A: General, 2001, 208, 91-98 Deep desulfurization of heavy atmospheric gas oil with CoMoAl catalysts effect of sulfur adsorption. Applied Catalysis A: General, 1995, 122, 99-110 NO oxidation kinetics on iron zeolites: influence of framework type and iron speciation. Topics in Catalysis, 2004, 30/31, 333-339 A comparative study of an MCM-41 anchored quaternary ammonium chloride/SnCl4 catalyst and its silica gel analogue. Chemical Communications, 2001, 992-993 Synthesis of LaMnO3 in molten chlorides: effect of preparation conditions. Physical Chemistry Chemical Physics, 2013, 15, 10914-20 Magnetotransport properties of ferromagnetic LaMnO3+lihano-sized crystals. Journal of Magnetism and Magnetic Materials, 2010, 322, 1311-1314 Oxidative conversion of LPG to olefins with mixed oxide catalysts: Surface chemistry and reactions network. Studies in Surface Science and Catalysis, 1997, 315-326 Alumina Foam Coated with Nanostructured Chromia AerogetilEfficient Catalytic Material for Complete Combustion of Chlorinated VOC. Industrial & Amp; Engineering Chemistry Research, 2006, 45, 7462-7469 Silica-supported small crystals of ZSM-5 zeolite. Applied Catalysis A: General, 1994, 115, L7-L14 CO2 hydrogenation to higher hydrocarbons on K/Fe®LID spinel catalysts promoted with Si, Ti, Zr, Hf, Mn and Ce. Catalysis Science and Technology, 2017, 7, 4048-4063 Effect of silica wall microprosity on the state and performance of TiO2 nanocrystals in SBA-15 matrix. Microporous and Mes	Fe-MFI catalysts. Applied Catalysis B: Environmental, 2007, 70, 53-57 Simulation of novel process of CO 2 conversion to liquid fuels. Journal of CO2 Utilization, 2017, 17, 284-288 Modelling of a trickle-bed reactorthe hydrogenation of xylose to xylitol. Chemical Engineering Science, 1985, 40, 1309-1311 A Simple Approach to Highly Sensitive Tubular Reactors. SIAM Journal on Applied Mathematics, 1988, 48, 1083-1101 Enantioselective hydrogenation of methyl acetoacetate catalyzed by nickel supported on activated carbon or graphite. Applied Catalysis A: General, 2001, 208, 91-98 Deep desulfurization of heavy atmospheric gas oil with CoMoAl catalysts effect of sulfur adsorption. Applied Catalysis A: General, 1995, 122, 99-110 NO oxidation kinetics on iron zeolites: influence of framework type and iron speciation. Topics in Catalysis, 2004, 30/31, 333-339 A comparative study of an MCM-41 anchored quaternary ammonium chloride/SnCl4 catalyst and its silica gel analogue. Chemical Communications, 2001, 992-993 Synthesis of LaMnO3 in molten chlorides: effect of preparation conditions. Physical Chemistry Chemical Physics, 2013, 15, 10914-20 Aganetotransport properties of ferromagnetic LaMnO3+ihano-sized crystals. Journal of Magnetism and Magnetic Materials, 2010, 322, 1311-1314 Oxidative conversion of LPG to olefins with mixed oxide catalysts: Surface chemistry and reactions network. Studies in Surface Science and Catalysis, 1997, 315-326 Alumina Foam Costed with Nanostructured Chromia Aerogel/LEfficient Catalytic Material for Complete Combustion of Chlorinated VOC. Industrial Ramps. Engineering Chemistry Research, 2006, 45, 7462-7469 Silica-supported small crystals of ZSM-5 zeolite. Applied Catalysis A: General, 1994, 115, L7-L14 5.1 CO2 hydrogenation to higher hydrocarbons on K/Fea/IID spinel catalysts promoted with Si, Ti, Zr, Hf, Mn and Ce. Catalysis Science and Technology, 2017, 7, 4048-4063 Effect of silica wall microporosity on the state and performance of TiO2 nanocrystals in SBA-15 Metal particle st

54	Runaway in Highly Sensitive Tubular Reactors. SIAM Journal on Applied Mathematics, 1988, 48, 1437-14	50 .8	13
53	Heterogenization of Rh-MeDuPHOS by occlusion in polyvinyl alcohol films. <i>Tetrahedron: Asymmetry</i> , 2002 , 13, 465-468		12
52	The role and stability of Li 2 O 2 phase in supported LiCl catalyst in oxidative dehydrogenation of n -butane. <i>Journal of Molecular Catalysis A</i> , 2001 , 176, 127-139		12
51	Grain boundaries at the surface of consolidated MgO nanocrystals and acid-base functionality. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 14783-96	3.6	11
50	Effect of SBA-15 microporosity on the inserted TiO2 crystal size determined by Raman spectroscopy. <i>Materials Chemistry and Physics</i> , 2010 , 122, 53-59	4.4	11
49	O2(1) generation in a bubble column reactor for chemically pumped iodine lasers: Experiment and modeling. <i>Journal of Applied Physics</i> , 1991 , 70, 5211-5220	2.5	11
48	Grain boundaries in nanocrystalline catalytic materials as a source of surface chemical functionality. <i>Reviews in Chemical Engineering</i> , 2014 , 30,	5	10
47	Effect of particle size on magnetic properties of nanoparticles. <i>Superlattices and Microstructures</i> , 2008 , 44, 476-482	2.8	10
46	High loading of short W(Mo)S2 slabs inside the nanotubes of SBA-15. Promotion with Ni(Co) and performance in hydrodesulfurization and hydrogenation <i>Studies in Surface Science and Catalysis</i> , 2003 , 146, 721-724	1.8	10
45	Aerobic oxidation of benzylic alcohols with solid alkaline metal hydroxides. <i>Kinetics and Catalysis</i> , 2010 , 51, 63-68	1.5	9
44	Metastable diamagnetic response of 20nm La1⊠MnO3 particles. <i>Physical Review B</i> , 2008 , 77,	3.3	9
43	Unexpected Performance of Solid Alkaline Metal Hydroxides in Liquid Phase Oxidation of 1-Phenylethanol. <i>Letters in Organic Chemistry</i> , 2006 , 3, 664-667	0.6	9
42	Ammoxidation of p-cresol to p-hydroxybenzonitrile High-performance boria-phosphoria supported catalysts. <i>Applied Catalysis A: General</i> , 2001 , 208, 21-34	5.1	9
41	Dehydrogenation of Neohexane to Neohexene on Platinum Polymetallic Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 5949-5951	3.9	9
40	Deep hydrodesulfurization of atmospheric gas oil; Effects of operating conditions and modelling by artificial neural network techniques. <i>Fuel</i> , 1996 , 75, 907-911	7.1	9
39	Equilibrium Temperature Profiles in Highly Sensitive Tubular Reactors. <i>SIAM Journal on Applied Mathematics</i> , 1987 , 47, 1287-1305	1.8	9
38	Molten salt synthesis of LaCoO3 perovskite. <i>Journal of Materials Science</i> , 2017 , 52, 11383-11390	4.3	8
37	Attenuation of ultrasound in porous media with dispersed microbubbles. <i>Ultrasonics</i> , 2000 , 38, 767-9	3.5	8

(2020-2018)

36	Performance of Reverse Water Gas Shift on Coprecipitated and C-Templated BaFe-Hexaaluminate: The Effect of Fe Loading, Texture, and Promotion with K. <i>ChemCatChem</i> , 2018 , 10, 3795-3805	5.2	7	
35	Novel nitrogen containing heterogeneous catalysts for oxidative dehydrogenation of light paraffins. <i>Catalysis Communications</i> , 2002 , 3, 327-333	3.2	7	
34	Reverse Water Gas Shift by Chemical Looping with Iron-Substituted Hexaaluminate Catalysts. <i>Catalysts</i> , 2020 , 10, 1082	4	6	
33	Medium severity hydrotreating and hydrocracking of Israeli shale oil. <i>Fuel</i> , 1998 , 77, 1589-1597	7.1	6	
32	Kinetic Experiments and Modeling of a Complex DeNOx System: Decane Selective Catalytic Reduction of NOx in the Gas Phase and over an Fe-MFI Type Zeolite Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 4523-4533	3.9	6	
31	Deactivation of a multimetal supported catalyst for anilineN-alkylation with alcohol. <i>Applied Catalysis A: General</i> , 1994 , 118, 139-152	5.1	6	
30	Liquid-solid mass transfer in a trickle-bed reactor measured by means of a catalytic reaction. <i>Chemical Engineering Science</i> , 1985 , 40, 631-634	4.4	6	
29	Pressure-induced suppression of ferromagnetic phase in LaCoO3 nanoparticles. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 5204-5206	3.9	5	
28	The Sonochemical Insertion of Nanomaterials into Mesostructures. <i>Transactions of the Indian Ceramic Society</i> , 2004 , 63, 137-144	1.8	5	
27	Hydrogenation of Benzaldehyde to Benzyl Alcohol in a Slurry and Fixed-Bed Reactor. <i>Studies in Surface Science and Catalysis</i> , 1991 , 105-112	1.8	5	
26	Accurate one-dimensional fixed-bed reactor model based on asymptotic analysis. <i>AICHE Journal</i> , 1988 , 34, 1367-1372	3.6	5	
25	Effect of Surface Chemistry and Crystallographic Parameters of TiO2 Anatase Nanocrystals on Photocatalytic Degradation of Bisphenol A. <i>Catalysts</i> , 2019 , 9, 447	4	4	
24	CO2 reduction reactions: general discussion. <i>Faraday Discussions</i> , 2015 , 183, 261-90	3.6	4	
23	ShapeBelectivity of Pt On Carbon Fibers Catalysts. <i>Studies in Surface Science and Catalysis</i> , 1993 , 78, 353-359	1.8	4	
22	Vapor-liquid equilibrium of aqueous crown ether solutions. <i>Fluid Phase Equilibria</i> , 1984 , 17, 135-138	2.5	4	
21	Conversion of hydrous bio-ethanol on ZnxZryOz catalyst to renewable liquid chemicals and additives to gasoline. <i>Fuel Processing Technology</i> , 2020 , 198, 106246	7.2	4	
20	Techno-economic analysis of a sustainable process for converting CO2 and H2O to feedstock for fuels and chemicals. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 486-500	5.8	4	
19	Electrospun nanofibers with surface oriented lamellar patterns and their potential applications. Nanoscale, 2020 , 12, 12993-13000	7.7	3	

18	Homogeneous Tubular-Flow Process for Monoolein Preparation. <i>JAOCS, Journal of the American Oil ChemistskSociety</i> , 2015 , 92, 1525-1529	1.8	3
17	Application of Cs salt of 12-tungstophosphoric acid supported on SBA-15 mesoporous silica in NO x storage. <i>Topics in Catalysis</i> , 2007 , 42-43, 203-207	2.3	3
16	Geometric and electronic factors in paraffin dehydrogenation on bimetallic platinum catalysts. <i>Reaction Kinetics and Catalysis Letters</i> , 2005 , 85, 341-345		3
15	Silica-supported crystals of ZSM-5 zeolite: effect of zeolite loading. <i>Studies in Surface Science and Catalysis</i> , 1995 , 357-362	1.8	3
14	Utilization of CO-rich waste gases from the steel industry for production of renewable liquid fuels. <i>Energy Conversion and Management</i> , 2021 , 240, 114233	10.6	3
13	Effect of salt type on the particle size of LaMn1-xFexO3 (0.1⊠0.5) synthesized in molten chlorides. <i>Materials Chemistry and Physics</i> , 2019 , 231, 181-187	4.4	2
12	Core-Shell FeO@LaSrFeO Material for Catalytic Oxidations: Coverage of Iron Oxide Core, Oxygen Storage Capacity and Reactivity of Surface Oxygens. <i>Materials</i> , 2021 , 14,	3.5	2
11	Effect of surface acidity-basicity balance in modified ZnxZryOz catalyst on its performance in the conversion of hydrous ethanol to hydrocarbons. <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 95, 156-169	6.3	2
10	Eco-Friendly and Sustainable Process for Converting Hydrous Bioethanol to Butanol. <i>Catalysts</i> , 2021 , 11, 498	4	2
9	Relationship of Crystals Shape, Aggregation Mode and Surface Purity in Catalytic Wet Peroxide Oxidation of Phenol in Dark with Titania Anatase Nanocrystals. <i>Catalysis Letters</i> , 2018 , 148, 3524-3533	2.8	2
8	Tail-selective hydrocracking of heavy gas oil in diesel production. <i>Studies in Surface Science and Catalysis</i> , 1997 , 371-378	1.8	1
7	Micro-level instability of bubble flows in packings. <i>Chemical Engineering Science</i> , 2003 , 58, 1631-1640	4.4	1
6	Hydrogenation of CO2 on Fe-Based Catalysts: Preferred Route to Renewable Liquid Fuels. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	1
5	Dehydrogenation of methoxyisopropanol to methoxyacetone on supported bimetallic Cu-Zn catalysts. <i>Studies in Surface Science and Catalysis</i> , 1997 , 407-414	1.8	
4	Two-Phase Flow Filtrating in Packed Beds. Chemie-Ingenieur-Technik, 2001, 73, 746-746	0.8	
3	Effects of gaseous and liquid components on rate of deep desulfurization of heavy atmospheric gas oil. <i>Studies in Surface Science and Catalysis</i> , 1999 , 127, 393-396	1.8	
2	A GENERAL RUNAWAY CRITERION FOR FIXED-BED REACTORS. <i>Chemical Engineering Communications</i> , 1990 , 96, 291-302	2.2	
1	Chemical looping reaction of methane with oxygen from La0.8Sr0.2FeO3-land La0.8Sr0.2Fe		