Chunmei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5108508/publications.pdf

Version: 2024-02-01

257357 434063 4,462 31 24 31 citations h-index g-index papers 32 32 32 5768 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 3115-3124.	5.7	1,056
2	Structure and Properties of Silk Hydrogels. Biomacromolecules, 2004, 5, 786-792.	2.6	735
3	Design of biodegradable, implantable devices towards clinical translation. Nature Reviews Materials, 2020, 5, 61-81.	23.3	440
4	Silkworm silk-based materials and devices generated using bio-nanotechnology. Chemical Society Reviews, 2018, 47, 6486-6504.	18.7	324
5	Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nature Communications, 2017, 8, 1387.	5.8	208
6	3D Bioprinting of Selfâ€Standing Silkâ€Based Bioink. Advanced Healthcare Materials, 2018, 7, e1701026.	3.9	177
7	Thermoplastic moulding of regenerated silk. Nature Materials, 2020, 19, 102-108.	13.3	138
8	Liquid Exfoliated Natural Silk Nanofibrils: Applications in Optical and Electrical Devices. Advanced Materials, 2016, 28, 7783-7790.	11.1	134
9	Highâ€Strength, Durable Allâ€Silk Fibroin Hydrogels with Versatile Processability toward Multifunctional Applications. Advanced Functional Materials, 2018, 28, 1704757.	7.8	133
10	Robust bioengineered 3D functional human intestinal epithelium. Scientific Reports, 2015, 5, 13708.	1.6	131
11	Enzymatic Degradation of <i>Bombyx mori</i> Silk Materials: A Review. Biomacromolecules, 2020, 21, 1678-1686.	2.6	99
12	Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials, 2021, 276, 120995.	5.7	96
13	Programming function into mechanical forms by directed assembly of silk bulk materials. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 451-456.	3.3	78
14	Silk apatite composites from electrospun fibers. Journal of Materials Research, 2005, 20, 3374-3384.	1.2	76
15	Bioelectric modulation of macrophage polarization. Scientific Reports, 2016, 6, 21044.	1.6	72
16	Fiberâ€Based Biopolymer Processing as a Route toward Sustainability. Advanced Materials, 2022, 34, e2105196.	11.1	71
17	Bioelectric modulation of wound healing in a 3D inÂvitro model of tissue-engineered bone. Biomaterials, 2013, 34, 6695-6705.	5.7	68
18	Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14602-14608.	3.3	63

Chunmei Li

#	Article	IF	CITATION
19	Engineering silk materials: From natural spinning to artificial processing. Applied Physics Reviews, 2020, 7, .	5.5	56
20	Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering. Biomaterials, 2017, 145, 44-55.	5.7	51
21	Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing. Biomaterials, 2016, 110, 24-33.	5.7	48
22	Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomaterialia, 2015, 11, 222-232.	4.1	45
23	Combining In Silico Design and Biomimetic Assembly: A New Approach for Developing Highâ€Performance Dynamic Responsive Bioâ€Nanomaterials. Advanced Materials, 2018, 30, e1802306.	11.1	34
24	Coding Cell Micropatterns Through Peptide Inkjet Printing for Arbitrary Biomineralized Architectures. Advanced Functional Materials, 2018, 28, 1800228.	7.8	31
25	Protein composites from silkworm cocoons as versatile biomaterials. Acta Biomaterialia, 2021, 121, 180-192.	4.1	29
26	Liquid-Exfoliated Mesostructured Collagen from the Bovine Achilles Tendon as Building Blocks of Collagen Membranes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3186-3198.	4.0	26
27	Silk Biomaterials-Mediated miRNA Functionalized Orthopedic Devices. Tissue Engineering - Part A, 2019, 25, 12-23.	1.6	20
28	Assessment of Multipotent Mesenchymal Stromal Cells in Bone Marrow Aspirate From Human Calcaneus. Journal of Foot and Ankle Surgery, 2017, 56, 42-46.	0.5	8
29	Developing a selfâ€organized tubulogenesis model of human renal proximal tubular epithelial cells in vitro. Journal of Biomedical Materials Research - Part A, 2020, 108, 795-804.	2.1	7
30	Bottom-Up Construction of Electrochemically Active Living Filters: From Graphene Oxide Mediated Formation of Bacterial Cables to 3D Assembly of Hierarchical Architectures. ACS Applied Bio Materials, 2020, 3, 7376-7381.	2.3	4
31	Editorial: Silk-Based Functional Biomaterials. Frontiers in Bioengineering and Biotechnology, 2021, 9,	2.0	3