
Simon D Bamforth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5108321/publications.pdf Version: 2024-02-01

SIMON D RAMEORTH

#	Article	IF	CITATIONS
1	Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nature Genetics, 2001, 29, 469-474.	21.4	290
2	Development and tissue origins of the mammalian cranial base. Developmental Biology, 2008, 322, 121-132.	2.0	244
3	Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nature Genetics, 2004, 36, 1189-1196.	21.4	190
4	Physical and Functional Interactions among AP-2 Transcription Factors, p300/CREB-binding Protein, and CITED2. Journal of Biological Chemistry, 2003, 278, 16021-16029.	3.4	133
5	Identification of cardiac malformations in mice lacking Ptdsrusing a novel high-throughput magnetic resonance imaging technique. BMC Developmental Biology, 2004, 4, 16.	2.1	123
6	Normal and abnormal development of the intrapericardial arterial trunks in humans and mice. Cardiovascular Research, 2012, 95, 108-115.	3.8	106
7	Cited2 Is an Essential Regulator of Adult Hematopoietic Stem Cells. Cell Stem Cell, 2009, 5, 659-665.	11.1	97
8	Transcriptional Coactivator Cited2 Induces Bmi1 and Mel18 and Controls Fibroblast Proliferation via Ink4a/ARF. Molecular and Cellular Biology, 2003, 23, 7658-7666.	2.3	80
9	Rapid identification and 3D reconstruction of complex cardiac malformations in transgenic mouse embryos using fast gradient echo sequence magnetic resonance imaging. Journal of Molecular and Cellular Cardiology, 2003, 35, 217-222.	1.9	66
10	Clarification of the identity of the mammalian fifth pharyngeal arch artery. Clinical Anatomy, 2013, 26, 173-182.	2.7	54
11	The effect of TNF-1 \pm and IL-6 on the permeability of the rat blood-retinal barrier in vivo. Acta Neuropathologica, 1996, 91, 624-632.	7.7	52
12	Disruption of epithelial tight junctions is prevented by cyclic nucleotide-dependent protein kinase inhibitors. Histochemistry and Cell Biology, 2000, 113, 349-361.	1.7	47
13	High-resolution, high-throughput magnetic resonance imaging of mouse embryonic anatomy using a fast gradient-echo sequence. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2003, 16, 43-51.	2.0	47
14	High-resolution imaging of normal anatomy, and neural and adrenal malformations in mouse embryos using magnetic resonance microscopy. Journal of Anatomy, 2003, 202, 239-247.	1.5	47
15	TGFβ signaling and congenital heart disease: Insights from mouse studies. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 423-434.	1.6	43
16	Epiblastic Cited2 deficiency results in cardiac phenotypic heterogeneity and provides a mechanism for haploinsufficiency. Cardiovascular Research, 2008, 79, 448-457.	3.8	33
17	Myths and Realities Relating to Development of the Arterial Valves. Journal of Cardiovascular Development and Disease, 2014, 1, 177-200.	1.6	33
18	How frequent is the fifth arch artery?. Cardiology in the Young, 2015, 25, 628-646.	0.8	31

SIMON D BAMFORTH

#	Article	IF	CITATIONS
19	A cell-autonomous role of Cited2 in controlling myocardial and coronary vascular development. European Heart Journal, 2013, 34, 2557-2565.	2.2	26
20	CITED2 Signals through Peroxisome Proliferator-Activated Receptor-Â to Regulate Death of Cortical Neurons after DNA Damage. Journal of Neuroscience, 2008, 28, 5559-5569.	3.6	24
21	High-Throughput Analysis of Mouse Embryos by Magnetic Resonance Imaging. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067538.	0.3	19
22	Functional Significance of SRJ Domain Mutations in CITED2. PLoS ONE, 2012, 7, e46256.	2.5	19
23	<i>Pax9</i> is required for cardiovascular development and interacts with <i>Tbx1</i> in the pharyngeal endoderm to control 4th pharyngeal arch artery morphogenesis. Development (Cambridge), 2019, 146, .	2.5	19
24	Morphogenesis of the Mammalian Aortic Arch Arteries. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	19
25	A novel role for transcription factor <i>Lmo4</i> in thymus development through genetic interaction with <i>Cited2</i> . Developmental Dynamics, 2010, 239, 1988-1994.	1.8	13
26	How best to describe the pharyngeal arch arteries when the fifth arch does not exist?. Cardiology in the Young, 2020, 30, 1708-1710.	0.8	10
27	Disruption of embryonic ROCK signaling reproduces the sarcomeric phenotype of hypertrophic cardiomyopathy. JCI Insight, 2019, 4, .	5.0	9
28	Pax9 and Gbx2 Interact in the Pharyngeal Endoderm to Control Cardiovascular Development. Journal of Cardiovascular Development and Disease, 2020, 7, 20.	1.6	8
29	Early Embryonic Expression of AP-2α Is Critical for Cardiovascular Development. Journal of Cardiovascular Development and Disease, 2020, 7, 27.	1.6	6
30	Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype. BMC Developmental Biology, 2021, 21, 14.	2.1	6
31	The Right Subclavian Artery Arising as the First Branch of a Left-Sided Aortic Arch. World Journal for Pediatric & Congenital Heart Surgery, 2014, 5, 456-459.	0.8	5
32	Childhood Presentation of Interrupted Aortic Arch With Persistent Carotid Ducts. World Journal for Pediatric & Congenital Heart Surgery, 2015, 6, 335-338.	0.8	4
33	The Blood-Retinal Barrier in Immune-Mediated Diseases of the Retina. , 1995, , 315-326.		4
34	Fifth arch artery – a case of mistaken identity?. Cardiology in the Young, 2018, 28, 182-184.	0.8	3
35	Normal and Abnormal Development of the Heart. , 2014, , 151-177.		3
36	Anomalous origin of the left pulmonary artery from the internal carotid artery. Cardiology in the Young, 2016, 26, 143-144.	0.8	1

SIMON D BAMFORTH

#	Article	IF	CITATIONS
37	Understanding the morphogenesis of the left-sided arterial duct in the setting of a right-sided aortic arch. Cardiology in the Young, 2017, 27, 369-372.	0.8	1
38	Molecular Pathways and Animal Models of d-Transposition of the Great Arteries. , 2016, , 449-458.		1
39	The Reappraisal of Normal and Abnormal Cardiac Development. , 2012, , 391-414.		1
40	PAX Genes in Cardiovascular Development. International Journal of Molecular Sciences, 2022, 23, 7713.	4.1	1
41	127â€Developmental rock downregulation disrupts sarcomeric structure resulting in the development of hypertrophic cardiomyopathy. , 2019, , .		Ο
42	Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies. , 2016, , 513-526.		0
43	Development and Maldevelopment of the Ventricular Outflow Tracts. , 2016, , 27-59.		О