Claus Johansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5107890/publications.pdf

Version: 2024-02-01

126708 138251 3,782 93 33 58 h-index citations g-index papers 93 93 93 5253 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	HSP90 inhibitor RGRNâ€305 for oral treatment of plaqueâ€type psoriasis: efficacy, safety and biomarker results in an openâ€label proofâ€ofâ€concept study*. British Journal of Dermatology, 2022, 186, 861-874.	1.4	19
2	Climatotherapy at the Dead Sea for psoriasis is a highly effective antiâ€inflammatory treatment in the short term: AnÂimmunohistochemical study. Experimental Dermatology, 2022, , .	1.4	2
3	Quantification of Immunohistochemically Stained Cells in Skin Biopsies. Dermatopathology (Basel,) Tj ETQq1 1 (0.784314 0.7	rgBT Overloc
4	<scp>miR</scp> â€378a: an amplifier of the <scp>interleukinâ€17A</scp> response in keratinocytes. British Journal of Dermatology, 2022, , .	1.4	0
5	I-Kappa-B-Zeta Regulates Interleukin-17A/Tumor Necrosis Factor-Alpha Mediated Synergistic Induction of Interleukin-19 and Interleukin-20 in Humane Keratinocytes. Annals of Dermatology, 2021, 33, 122.	0.3	3
6	The HSP90 inhibitor RGRNâ€305 exhibits strong immunomodulatory effects in human keratinocytes. Experimental Dermatology, 2021, 30, 773-781.	1.4	15
7	Key Signaling Pathways in Psoriasis: Recent Insights from Antipsoriatic Therapeutics. Psoriasis: Targets and Therapy, 2021, Volume 11, 83-97.	1.2	32
8	Tissue-Resident Memory T Cells in Skin Diseases: A Systematic Review. International Journal of Molecular Sciences, 2021, 22, 9004.	1.8	9
9	IkBζ is a Key Regulator of Tumour Necrosis Factor-a and Interleukin-17A-mediated Induction of Interleukin-36g in Human Keratinocytes. Acta Dermato-Venereologica, 2021, 101, adv00386.	0.6	5
10	ll̂ºBζ is a key player in the antipsoriatic effects of secukinumab. Journal of Allergy and Clinical Immunology, 2020, 145, 379-390.	1.5	24
11	Suppressed microRNAâ€195â€5p expression in mycosis fungoides promotes tumor cell proliferation. Experimental Dermatology, 2020, 30, 1141-1149.	1.4	4
12	Effect of Dead Sea Climatotherapy on Psoriasis; A Prospective Cohort Study. Frontiers in Medicine, 2020, 7, 83.	1.2	13
13	IL-37 Expression Is Downregulated in Lesional Psoriasis Skin. ImmunoHorizons, 2020, 4, 754-761.	0.8	18
14	Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood, 2019, 134, 1072-1083.	0.6	94
15	Antiâ€tumor necrosis factor treatment increases both the Th17 and Th22 T helper subsets in spondyloarthritis. Apmis, 2019, 127, 789-796.	0.9	3
16	High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. BMC Medical Genomics, 2019, 12, 174.	0.7	43
17	Non-random Plaque-site Recurrence of Psoriasis in Patients Treated with Dead Sea Climatotherapy. Acta Dermato-Venereologica, 2019, 99, 909-910.	0.6	9
18	Investigating the Role of I Kappa B Kinase $\hat{l}\mu$ in the Pathogenesis of Psoriasis. Acta Dermato-Venereologica, 2019, 99, 1035-1036.	0.6	0

#	Article	IF	CITATIONS
19	Prognostic miRNA classifier in early-stage mycosis fungoides: development and validation in a Danish nationwide study. Blood, 2018, 131, 759-770.	0.6	54
20	The human <scp>IL</scp> â€17A/F heterodimer regulates psoriasisâ€associated genes through lκBζ. Experimental Dermatology, 2018, 27, 1048-1052.	1.4	21
21	Differential Effects of Digoxin on Imiquimod-Induced Psoriasis-Like Skin Inflammation on the Ear and Back. Annals of Dermatology, 2018, 30, 485.	0.3	9
22	Langerhans cell markers <scp>CD</scp> 1a and <scp>CD</scp> 207 are the most rapidly responding genes in lesional psoriatic skin following adalimumab treatment. Experimental Dermatology, 2017, 26, 804-810.	1.4	11
23	<scp>TRIM</scp> 21 is important in the early phase of inflammation in the imiquimodâ€induced psoriasisâ€like skin inflammation mouse model. Experimental Dermatology, 2017, 26, 713-720.	1.4	13
24	Leptin deficiency in mice counteracts imiquimod (IMQ)â€induced psoriasisâ€like skin inflammation while leptin stimulation induces inflammation in human keratinocytes. Experimental Dermatology, 2017, 26, 338-345.	1.4	30
25	<scp>IL</scp> â€17F regulates psoriasisâ€associated genes through ।ि°Bζ. Experimental Dermatology, 2017, 26, 234-241.	1.4	24
26	Generation and Culturing of Primary Human Keratinocytes from Adult Skin. Journal of Visualized Experiments, 2017, , .	0.2	15
27	The â€Alarmins―HMBG1 and IL-33 Downregulate Structural Skin Barrier Proteins and Impair Epidermal Growth. Acta Dermato-Venereologica, 2017, 97, 305-312.	0.6	38
28	STAT2 is involved in the pathogenesis of psoriasis by promoting CXCL11 and CCL5 production by keratinocytes. PLoS ONE, 2017, 12, e0176994.	1.1	27
29	Protein phosphatase 2Cδ/Wip1 regulates phospho-p90RSK2 activity in lesional psoriatic skin. Journal of Inflammation Research, 2017, Volume 10, 169-180.	1.6	6
30	Tumour necrosis factor- \hat{l} ± plays a significant role in the Aldara-induced skin inflammation in mice. British Journal of Dermatology, 2016, 174, 1011-1021.	1.4	17
31	Characterization of TNF-α– and IL-17A–Mediated Synergistic Induction ofÂDEFB4 Gene Expression in Human Keratinocytes through IκBζ. Journal of Investigative Dermatology, 2016, 136, 1608-1616.	0.3	40
32	Measuring serum concentrations of interleukin-33 in atopic dermatitis is associated with potential false positive results. SpringerPlus, 2016, 5, 33.	1.2	11
33	Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules. Molecular and Cellular Therapies, 2016, 4, 1.	0.2	19
34	ll̂ºBl̂¶: A key protein in the pathogenesis of psoriasis. Cytokine, 2016, 78, 20-21.	1.4	10
35	The role of leptin in psoriasis comprises a proinflammatory response by the dermal fibroblast. British Journal of Dermatology, 2016, 174, 187-190.	1.4	15
36	Pathway Analysis of Skin from Psoriasis Patients after Adalimumab Treatment Reveals New Early Events in the Anti-Inflammatory Mechanism of Anti-TNF-α. PLoS ONE, 2016, 11, e0167437.	1.1	11

#	Article	IF	CITATIONS
37	Comparative Analysis of Two Gene-Targeting Approaches Challenges the Tumor-Suppressive Role of the Protein Kinase MK5/PRAK. PLoS ONE, 2015, 10, e0136138.	1.1	15
38	Changes in <scp>mRNA</scp> expression precede changes in micro <scp>RNA</scp> expression in lesional psoriatic skin during treatment with adalimumab. British Journal of Dermatology, 2015, 173, 436-447.	1.4	34
39	Interleukin-23 in early disease development in rheumatoid arthritis. Scandinavian Journal of Rheumatology, 2015, 44, 438-442.	0.6	12
40	$\hat{\mathbb{I}^{\Omega}}$ is a key driver in the development of psoriasis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5825-33.	3.3	95
41	Aldara < sup > \hat{A}^{\otimes} < /sup > -induced skin inflammation: studies of patients with psoriasis. British Journal of Dermatology, 2015, 172, 345-353.	1.4	42
42	Inflammatory Cytokines Break Down Intrinsic Immunological Tolerance of Human Primary Keratinocytes to Cytosolic DNA. Journal of Immunology, 2014, 192, 2395-2404.	0.4	44
43	Efficacy of ustekinumab in palmoplantar pustulosis and palmoplantar pustular psoriasis. International Journal of Dermatology, 2014, 53, e464-6.	0.5	31
44	Interleukin 20 protein locates to distinct mononuclear cells in psoriatic skin. Experimental Dermatology, 2014, 23, 349-351.	1.4	11
45	Anti-inflammatory effect of a retrovirus-derived immunosuppressive peptide in mouse models. BMC Immunology, 2013, 14, 51.	0.9	5
46	The expression of dual-specificity phosphatase 1 mRNA is downregulated in lesional psoriatic skin. British Journal of Dermatology, 2013, 168, 339-345.	1.4	15
47	STAT1 expression and activation is increased in lesional psoriatic skin. British Journal of Dermatology, 2013, 168, 302-310.	1.4	78
48	Studies of <scp>J</scp> ak/ <scp>STAT</scp> 3 expression and signalling in psoriasis identifies <scp>STAT</scp> 3ê€ <scp>er727 phosphorylation as a modulator of transcriptional activity. Experimental Dermatology, 2013, 22, 323-328.</scp>	1.4	86
49	MicroRNA normalization candidates for quantitative reverse-transcriptase polymerase chain reaction in real time in lesional and nonlesional psoriatic skin. British Journal of Dermatology, 2013, 169, 677-681.	1.4	7
50	IL-20, IL-21 and p40: Potential Biomarkers of Treatment Response for Ustekinumab. Acta Dermato-Venereologica, 2013, 93, 150-155.	0.6	29
51	Ustekinumab in the Treatment of Refractory Chronic Cutaneous Lupus Erythematosus: A Case Report. Acta Dermato-Venereologica, 2013, 93, 368-369.	0.6	33
52	<scp>TNFα</scp> ―and <scp>IL</scp> ―17Aâ€mediated S100 <scp>A</scp> 8 expression is regulated by p38 <scp>MAPK</scp> . Experimental Dermatology, 2013, 22, 476-481.	1.4	34
53	Inflammation-Induced Alterations in the Skin Barrier Function: Implications in Atopic Dermatitis. Chemical Immunology and Allergy, 2012, 96, 77-80.	1.7	12
54	Mice Lacking MSK1 and MSK2 Show Reduced Skin Tumor Development in a Two-Stage Chemical Carcinogenesis Model. Cancer Investigation, 2011, 29, 240-245.	0.6	30

#	Article	IF	CITATIONS
55	CCL27 expression is regulated by both p38 MAPK and IKKβ signalling pathways. Cytokine, 2011, 56, 699-707.	1.4	12
56	The role of mitogen―and stressâ€activated protein kinase 1 and 2 in chronic skin inflammation in mice. Experimental Dermatology, 2011, 20, 140-145.	1.4	19
57	Regulation of caspase 14 expression in keratinocytes by inflammatory cytokines - a possible link between reduced skin barrier function and inflammation?. Experimental Dermatology, 2011, 20, 633-636.	1.4	70
58	Kinetics and differential expression of the skin-related chemokines CCL27 and CCL17 in psoriasis, atopic dermatitis and allergic contact dermatitis. Experimental Dermatology, 2011, 20, 789-794.	1.4	58
59	Dimethylfumarate inhibits MIF-induced proliferation of keratinocytes by inhibiting MSK1 and RSK1 activation and by inducing nuclear p-c-Jun (S63) and p-p53 (S15) expression. Inflammation Research, 2011, 60, 643-653.	1.6	35
60	Tumor Necrosis Factor α-Mediated Induction of Interleukin 17C in Human Keratinocytes Is Controlled by Nuclear Factor ÎB. Journal of Biological Chemistry, 2011, 286, 25487-25494.	1.6	51
61	Role of p38 Mitogen-activated Protein Kinase Isoforms in Murine Skin Inflammation Induced by 12-O-tetradecanoylphorbol 13-acetate. Acta Dermato-Venereologica, 2011, 91, 271-278.	0.6	12
62	Caspase-5 Expression Is Upregulated in Lesional Psoriatic Skin. Journal of Investigative Dermatology, 2011, 131, 670-676.	0.3	61
63	Adalimumab therapy rapidly inhibits p38 mitogen-activated protein kinase activity in lesional psoriatic skin preceding clinical improvement. British Journal of Dermatology, 2010, 162, 1216-1223.	1.4	31
64	Preferential inhibition of the mRNA expression of p38 mitogen-activated protein kinase regulated cytokines in psoriatic skin by anti-TNF1± therapy. British Journal of Dermatology, 2010, 163, 1194-1204.	1.4	57
65	A characterization of the expression of 14-3-3 isoforms in psoriasis, basal cell carcinoma, atopic dermatitis and contact dermatitis. Dermatology Reports, 2010, 2, 14.	0.4	8
66	The p38 MAPK Regulates IL-24 Expression by Stabilization of the 3′ UTR of IL-24 mRNA. PLoS ONE, 2010, 5, e8671.	1.1	35
67	MK2 regulates the early stages of skin tumor promotion. Carcinogenesis, 2009, 30, 2100-2108.	1.3	35
68	Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. British Journal of Dermatology, 2009, 160, 319-324.	1.4	303
69	The expression and phosphorylation of eukaryotic initiation factor 4E are increased in lesional psoriatic skin. British Journal of Dermatology, 2009, 161, 1059-1066.	1.4	16
70	The caspase-cleaved form of LYN mediates a psoriasis-like inflammatory syndrome in mice. EMBO Journal, 2009, 28, 2449-2460.	3.5	17
71	Reduced Oxazolone-Induced Skin Inflammation in MAPKAP Kinase 2 Knockout Mice. Journal of Investigative Dermatology, 2009, 129, 891-898.	0.3	36
72	IL-8 and p53 are inversely regulated through JNK, p38 and NF-κB p65 in HepG2 cells during an inflammatory response. Inflammation Research, 2008, 57, 329-339.	1.6	30

#	Article	IF	Citations
73	Proâ€inflammatory cytokine release in keratinocytes is mediated through the MAPK signalâ€integrating kinases. Experimental Dermatology, 2008, 17, 498-504.	1.4	38
74	The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nature Immunology, 2008, 9, 1028-1036.	7.0	297
75	Inflammasomes and inflammatory caspases in skin inflammation. Expert Review of Molecular Diagnostics, 2008, 8, 697-705.	1.5	30
76	IL-20 Gene Expression Is Induced by IL-1β through Mitogen-Activated Protein Kinase and NF-κB-Dependent Mechanisms. Journal of Investigative Dermatology, 2007, 127, 1326-1336.	0.3	52
77	Mitogen- and Stress-Activated Protein Kinase 2 and Cyclic AMP Response Element Binding Protein are Activated in Lesional Psoriatic Epidermis. Journal of Investigative Dermatology, 2007, 127, 2012-2019.	0.3	34
78	Dimethylfumarate Specifically Inhibits the Mitogen and Stress-Activated Kinases 1 and 2 (MSK1/2): Possible Role for its Anti-Psoriatic Effect. Journal of Investigative Dermatology, 2007, 127, 2129-2137.	0.3	57
79	The Activity of Caspase-1 Is Increased in Lesional Psoriatic Epidermis. Journal of Investigative Dermatology, 2007, 127, 2857-2864.	0.3	80
80	Mitogen- and Stress-Activated Protein Kinase 1 Is Activated in Lesional Psoriatic Epidermis and Regulates the Expression of Pro-Inflammatory Cytokines. Journal of Investigative Dermatology, 2006, 126, 1784-1791.	0.3	58
81	Protein Expression of TNF-α in Psoriatic Skin Is Regulated at a Posttranscriptional Level by MAPK-Activated Protein Kinase 2. Journal of Immunology, 2006, 176, 1431-1438.	0.4	130
82	The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. British Journal of Dermatology, 2005, 152, 37-42.	1.4	177
83	Inverse Regulation of the Nuclear Factor-ΰB Binding to the p53 and Interleukin-8 ΰB Response Elements in Lesional Psoriatic Skin. Journal of Investigative Dermatology, 2005, 124, 1284-1292.	0.3	53
84	Tumor necrosis factor-α-induced CTACK/CCL27 (cutaneous T-cell-attracting chemokine) production in keratinocytes is controlled by nuclear factor κB. Cytokine, 2005, 29, 49-55.	1.4	57
85	Lysophosphatidylcholine Induces Keratinocyte Differentiation and Upregulation of AP-1- and NF-κB DNA-binding Activity. Acta Dermato-Venereologica, 2004, 84, 433-438.	0.6	18
86	Activator protein 1 DNA binding activity is decreased in lesional psoriatic skin compared with nonlesional psoriatic skin. British Journal of Dermatology, 2004, 151, 600-607.	1.4	32
87	TARC augments TNF-alpha-induced CTACK production in keratinocytes. Experimental Dermatology, 2004, 13, 551-557.	1.4	27
88	1?,25(OH)2D3 regulates NF-?B DNA binding activity in cultured normal human keratinocytes through an increase in I?B? expression. Archives of Dermatological Research, 2004, 296, 195-202.	1.1	66
89	Growth medium-dependent ERK1/2 and AP-1 activity in cultured normal human keratinocytes modulates 1?,25-dihydroxyvitamin D3-induced differentiation. Archives of Dermatological Research, 2003, 295, 199-202.	1.1	0
90	$1\hat{1}\pm,25$ -Dihydroxyvitamin D3 Stimulates Activator Protein 1 DNA-Binding Activity by a Phosphatidylinositol 3-Kinase/Ras/MEK/Extracellular Signal Regulated Kinase $1/2$ and c-Jun N-Terminal Kinase 1-Dependent Increase in c-Fos, Fra1, and c-Jun Expression in Human Keratinocytes. Journal of Investigative Dermatology, 2003, 120, 561-570.	0.3	55

#	Article	IF	CITATIONS
91	Expression and Localization of Peroxisome Proliferator-Activated Receptors and Nuclear Factor κB in Normal and Lesional Psoriatic Skin. Journal of Investigative Dermatology, 2003, 121, 1104-1117.	0.3	105
92	Modulation of Keratinocyte Gene Expression and Differentiation by PPAR-Selective Ligands and Tetradecylthioacetic Acid. Journal of Investigative Dermatology, 2001, 116, 702-712.	0.3	213
93	$1\hat{l}\pm$,25-Dihydroxyvitamin D3 Induced Differentiation of Cultured Human Keratinocytes is Accompanied by a PKC-Independent Regulation of AP-1 DNA Binding Activity. Journal of Investigative Dermatology, 2000, 114, 1174-1179.	0.3	38