
Muhamad Risqi U Saputra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/510777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graph-Based Thermal–Inertial SLAM With Probabilistic Neural Networks. IEEE Transactions on Robotics, 2022, 38, 1875-1893.	7.3	16
2	SelfVIO: Self-supervised deep monocular Visual–Inertial Odometry and depth estimation. Neural Networks, 2022, 150, 119-136.	3.3	36
3	Deep Odometry Systems on Edge with EKF-LoRa Backend for Real-Time Indoor Positioning. , 2022, , .		4
4	Cut, Distil and Encode (CDE): Split Cloud-Edge Deep Inference. , 2021, , .		9
5	DeepTIO: A Deep Thermal-Inertial Odometry With Visual Hallucination. IEEE Robotics and Automation Letters, 2020, 5, 1672-1679.	3.3	37
6	milliEgo. , 2020, , .		53
7	Indoor positioning system in visually-degraded environments with millimetre-wave radar and inertial sensors. , 2020, , .		1
8	Visual SLAM and Structure from Motion in Dynamic Environments. ACM Computing Surveys, 2019, 51, 1-36.	16.1	253
9	Learning Monocular Visual Odometry through Geometry-Aware Curriculum Learning. , 2019, , .		31
10	GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks. , 2019, , .		89
11	DeepPCO: End-to-End Point Cloud Odometry through Deep Parallel Neural Network. , 2019, , .		34
12	Distilling Knowledge From a Deep Pose Regressor Network. , 2019, , .		58